Model reference adaptive state-dependent Riccati equation control of nonlinear uncertain systems: Regulation and tracking of free-floating space manipulators

2019 ◽  
Vol 84 ◽  
pp. 348-360 ◽  
Author(s):  
Saeed Rafee Nekoo
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ahmed Khamis ◽  
D. Subbaram Naidu ◽  
Ahmed M. Kamel

This paper presents an efficient online technique used for finite-horizon, nonlinear, stochastic, regulator, and tracking problems. This can be accomplished by the integration of the differential SDRE filter algorithm and the finite-horizon state dependent Riccati equation (SDRE) technique. Unlike the previous methods which deal with the linearized system, this technique provides finite-horizon estimation and control of the nonlinear stochastic systems. Further, the proposed technique is effective for a wide range of operating points. Simulation results of a missile guidance system are presented to illustrate the effectiveness of the proposed technique.


Author(s):  
Amir Yousefimanesh ◽  
Alireza Khosravi ◽  
Pouria Sarhadi

The nonlinear dynamic phenomenon like wing rock is one of the important issues in the high performance aircraft autopilot design. This phenomenon occurs in the form of constant amplitude oscillations in the roll dynamics, during the flight at high angles of attack (AOAs) and endangers carrying out the mission of an aircraft. In this paper, a composite adaptive posicast controller is designed for the wing rock phenomenon in a delta-wing aircraft with known input delay. The existence of the input delay besides the parametric uncertainties of the system dynamics adds to the complexity of the problem and can cause undesirable troubles in regulation and tracking performance or instability in the control system. Consequently, there is a need for a controller that can provide the stability and desirable regulation and tracking for the system. The proposed control method uses the system state forecasting and the composite model reference adaptive controller in an integrated control structure based on linear quadratic regulator (LQR). Combining the tracking error and the prediction error to form the adaptive laws in the composite model reference adaptive controller improves the characteristics of the system response and provides a better performance compared to the model reference adaptive controller in which the adaptive laws are formed only with the tracking error. Simulation results show the efficiency of the composite adaptive posicast controller in counteracting the system uncertainties in the presence of considerably large input delay cases.


Sign in / Sign up

Export Citation Format

Share Document