scholarly journals Erratum to “Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory” [Astroparticle Physics 32(2) (2009), 89–99]

2010 ◽  
Vol 33 (1) ◽  
pp. 65-67 ◽  
Author(s):  
J. Abraham ◽  
P. Abreu ◽  
M. Aglietta ◽  
C. Aguirre ◽  
E.J. Ahn ◽  
...  
2009 ◽  
Vol 32 (2) ◽  
pp. 89-99 ◽  
Author(s):  
J. Abraham ◽  
P. Abreu ◽  
M. Aglietta ◽  
C. Aguirre ◽  
E.J. Ahn ◽  
...  

2019 ◽  
Vol 197 ◽  
pp. 02001
Author(s):  
Bianca Keilhauer

The Pierre Auger Observatory for detecting ultrahigh energy cosmic rays has been founded in 1999. After a main planning and construction phase of about five years, the regular data taking started in 2004, but it took another four years until the full surface detector array was deployed. In parallel to the main detectors of the Observatory, a comprehensive set of instruments for monitoring the atmospheric conditions above the array was developed and installed as varying atmospheric conditions influence the development and detection of extensive air showers. The multitude of atmospheric monitoring installations at the Pierre Auger Observatory will be presented as well as the challenges and efforts to run such instruments for several decades.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
P. Abreu ◽  
M. Aglietta ◽  
M. Ahlers ◽  
E. J. Ahn ◽  
I. F. M. Albuquerque ◽  
...  

The observation of ultrahigh energy neutrinos (UHEνs) has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-goingν) or in the Earth crust (Earth-skimmingν), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEνs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEνs in the EeV range and above.


2021 ◽  
Vol 126 (15) ◽  
Author(s):  
A. Aab ◽  
P. Abreu ◽  
M. Aglietta ◽  
J. M. Albury ◽  
I. Allekotte ◽  
...  

2019 ◽  
Vol 210 ◽  
pp. 02010
Author(s):  
Analisa G. Mariazzi ◽  

In order to get the primary energy of cosmic rays from their extensive air showers using the fluorescence detection technique, the invisible energy should be added to the measured calorimetric energy. The invisible energy is the energy carried away by particles that do not deposit all their energy in the atmosphere. It has traditionally been calculated using Monte Carlo simulations that are dependent on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work the invisible energy is obtained directly from events detected by the Pierre Auger Observatory. The method applied is based on the correlation of the measurements of the muon number at the ground with the invisible energy of the showers. By using it, the systematic uncertainties related to the unknown mass composition and to the high energy hadronic interaction models are significantly reduced, improving in this way the estimation of the energy scale of the Observatory.


2019 ◽  
Vol 210 ◽  
pp. 02011 ◽  
Author(s):  
Maximilian Reininghaus ◽  
Ralf Ulrich

Current and future challenges in astroparticle physics require novel simulation tools to achieve higher precision and more flexibility. For three decades the FORTRAN version of CORSIKA served the community in an excellent way. However, the effort to maintain and further develop this complex package is getting increasingly difficult. To overcome existing limitations, and designed as a very open platform for all particle cascade simulations in astroparticle physics, we are developing CORSIKA 8 based on modern C++ and Python concepts. Here, we give a brief status report of the project.


2019 ◽  
Vol 210 ◽  
pp. 05002
Author(s):  
Fred Sarazin ◽  
Corbin Covault ◽  
Toshihiro Fujii ◽  
Robert Halliday ◽  
Jeffrey Johnsen ◽  
...  

We report on the first results of a unique in-situ experimental cross-calibration effort of the surface detector of the Pierre Auger Observatory and of the Telescope Array experiment (Auger@TA). In the first phase of Auger@TA, we performed surface detector station-to-station comparisons for a collection of extensive air showers landing near the experimental setup and detected by Telescope Array. Beyond the deduced cross-calibration curve between the Water-Cherenkov-based Auger and Scintillator-based TA Surface Detector stations, we also investigate the consistency of their response for individual reconstructed showers. The dataset is currently too small to draw firm conclusions as-of-yet. Hence, phase I data taking will continue even as we gear up for the deployment of an Auger micro-array within Telescope Array as part of Phase II of this work.


Author(s):  
A. Aab ◽  
◽  
P. Abreu ◽  
M. Aglietta ◽  
J. M. Albury ◽  
...  

Abstract The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between $$2\times 10^{17}$$2×1017 and $$2\times 10^{18}$$2×1018 eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector with those from the Auger fluorescence detector at $$10^{{17.5}}\, {\mathrm{eV}} $$1017.5eV and $$10^{{18}}\, {\mathrm{eV}} $$1018eV. We find that, for the models to explain the data, an increase in the muon density of $$38\%$$38%$$\pm 4\% (12\%)$$±4%(12%)$$\pm {}^{21\%}_{18\%}$$±18%21% for EPOS-LHC, and of $$50\% (53\%)$$50%(53%)$$\pm 4\% (13\%)$$±4%(13%)$$\pm {}^{23\%}_{20\%}$$±20%23% for QGSJetII-04, is respectively needed.


Sign in / Sign up

Export Citation Format

Share Document