On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

Author(s):  
N. Arsene ◽  
H. Rebel ◽  
O. Sima
2019 ◽  
Vol 197 ◽  
pp. 02001
Author(s):  
Bianca Keilhauer

The Pierre Auger Observatory for detecting ultrahigh energy cosmic rays has been founded in 1999. After a main planning and construction phase of about five years, the regular data taking started in 2004, but it took another four years until the full surface detector array was deployed. In parallel to the main detectors of the Observatory, a comprehensive set of instruments for monitoring the atmospheric conditions above the array was developed and installed as varying atmospheric conditions influence the development and detection of extensive air showers. The multitude of atmospheric monitoring installations at the Pierre Auger Observatory will be presented as well as the challenges and efforts to run such instruments for several decades.


2021 ◽  
Vol 126 (15) ◽  
Author(s):  
A. Aab ◽  
P. Abreu ◽  
M. Aglietta ◽  
J. M. Albury ◽  
I. Allekotte ◽  
...  

1978 ◽  
Vol 10 (4) ◽  
pp. 730-735
Author(s):  
H. S. Green

The theoretical analyses of the extensive air showers developing from the cosmic radiation has its origins in the work of Carlson and Oppenheimer (1937) and Bhabha and Heitler (1937), at a time when it was thought that such showers were initiated by electrons. The realization that protons and other nuclei were the primary particles led to a reformulation of the theory by Heitler and Janossy (1949), Messel and Green (1952) and others, in which the production of energetic pions and the three-dimensional development of air showers were accounted for. But as the soft (electromagnetic) component of the cosmic radiation is the most prominent feature of air showers at sea level, there has been a sustained interest in the theory of this component. Most of the more recent work, such as that by Butcher and Messel (1960) and Thielheim and Zöllner (1972) has relied on computer simulation; but this method has disadvantages in terms of accuracy and presentation of results, especially where a simultaneous analysis of the development of air showers in terms of several physical variables is required. This is so for instance when the time of arrival is one of the variables. Moyal (1956) played an important part in the analytical formulation of a stochastic theory of cosmic ray showers, with time as an explicit variable, and it is essentially this approach which will be adopted in the following. The actual distribution of arrival times is cosmic ray showers, for which results are obtained, is of current experimental interest (McDonald, Clay and Prescott (1977)).


2018 ◽  
Vol 33 (26) ◽  
pp. 1850153 ◽  
Author(s):  
L. B. Arbeletche ◽  
V. P. Gonçalves ◽  
M. A. Müller

The understanding of the basic properties of the ultrahigh-energy extensive air showers is dependent on the description of hadronic interactions in an energy range beyond that probed by the LHC. One of the uncertainties present in the modeling of air showers is the treatment of diffractive interactions, which are dominated by nonperturbative physics and usually described by phenomenological models. These interactions are expected to affect the development of the air showers, since they provide a way of transporting substantial amounts of energy deep in the atmosphere, modifying the global characteristics of the shower profile. In this paper, we investigate the impact of diffractive interactions in the observables that can be measured in hadronic collisions at high energies and ultrahigh-energy cosmic ray interactions. We consider three distinct phenomenological models for the treatment of diffractive physics and estimate the influence of these interactions on the elasticity, number of secondaries, longitudinal air shower profiles and muon densities for proton-air and iron-air collisions at different primary energies. Our results demonstrate that even for the most recent models, diffractive events have a non-negligible effect on the observables and that the distinct approaches for these interactions, present in the phenomenological models, still are an important source of theoretical uncertainty for the description of the extensive air showers.


2019 ◽  
Vol 210 ◽  
pp. 02010
Author(s):  
Analisa G. Mariazzi ◽  

In order to get the primary energy of cosmic rays from their extensive air showers using the fluorescence detection technique, the invisible energy should be added to the measured calorimetric energy. The invisible energy is the energy carried away by particles that do not deposit all their energy in the atmosphere. It has traditionally been calculated using Monte Carlo simulations that are dependent on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work the invisible energy is obtained directly from events detected by the Pierre Auger Observatory. The method applied is based on the correlation of the measurements of the muon number at the ground with the invisible energy of the showers. By using it, the systematic uncertainties related to the unknown mass composition and to the high energy hadronic interaction models are significantly reduced, improving in this way the estimation of the energy scale of the Observatory.


2019 ◽  
Vol 34 (12) ◽  
pp. 1950069
Author(s):  
M. A. Müller ◽  
V. P. Gonçalves

Charm and bottom particles are rare in Extensive Air Showers, but their effects can be radical on the EASs development. If such particles show up with a large fraction of primary energy, they can reach large atmospheric depths, depositing energy in deeper layers of the atmosphere. That will cause changes at the EAS observables ([Formula: see text], RMS and [Formula: see text]), besides a considerable change in the shape of longitudinal profile energy deposit in the atmosphere. We are using for this work a modified code of an EAS simulator, CORSIKA, with production of charm and bottom particles at the first interaction of the primary cosmic ray. We will show in this paper some results to different [Formula: see text] values and different production models.


Author(s):  
Alexander Shepetov ◽  
Alexander Chubenko ◽  
Bachtiyar Iskhakov ◽  
Olga Kryakunova ◽  
Orazaly Kalikulov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document