Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe

2006 ◽  
Vol 40 (27) ◽  
pp. 5304-5315 ◽  
Author(s):  
R.B.A. Koelemeijer ◽  
C.D. Homan ◽  
J. Matthijsen
2021 ◽  
Vol 13 (24) ◽  
pp. 5082
Author(s):  
Qianguang Tu ◽  
Yun Zhao ◽  
Jing Guo ◽  
Chunmei Cheng ◽  
Liangliang Shi ◽  
...  

Six years of hourly aerosol optical thickness (AOT) data retrieved from Himawari-8 were used to investigate the spatial and temporal variations, especially diurnal variations, of aerosols over the China Seas. First, the Himawari-8 AOT data were consistent with the AERONET measurements over most of the China Seas, except for some coastal regions. The spatial feature showed that AOT over high latitude seas was generally larger than over low latitude seas, and it is distributed in strips along the coastline and decreases gradually with increasing distance from the coastline. AOT undergoes diurnal variation as it decreases from 9:00 a.m. local time, reaching a minimum at noon, and then begins to increase in the afternoon. The percentage daily departure of AOT over the East China Seas generally ranged ±20%, increasing sharply in the afternoon; however, over the northern part of the South China Sea, daily departure reached a maximum of >40% at 4:00 p.m. The monthly variation in AOT showed a pronounced annual cycle. Seasonal variations of the spatial pattern showed that the largest AOT was usually observed in spring and varies in other seasons for different seas.


2013 ◽  
Vol 52 (4) ◽  
pp. 321-341 ◽  
Author(s):  
Ricardo M. Llamas ◽  
Roberto Bonifaz ◽  
Mauro Valdés ◽  
David Riveros-Rosas ◽  
Amando LeyvaContreras

2007 ◽  
Vol 7 (19) ◽  
pp. 5061-5079 ◽  
Author(s):  
A. Lauer ◽  
V. Eyring ◽  
J. Hendricks ◽  
P. Jöckel ◽  
U. Lohmann

Abstract. International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2) per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing the solar and thermal radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics to study the climate impacts of international shipping. The simulations show that emissions from ships significantly increase the cloud droplet number concentration of low marine water clouds by up to 5% to 30% depending on the ship emission inventory and the geographic region. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase of up to 5–10%. The sensitivity of the results is estimated by using three different emission inventories for present-day conditions. The sensitivity analysis reveals that shipping contributes to 2.3% to 3.6% of the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000 on the global mean. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm) over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases by up to 8–10% depending on the emission inventory. Changes in aerosol optical thickness caused by shipping induced modification of aerosol particle number concentration and chemical composition lead to a change in the shortwave radiation budget at the top of the atmosphere (ToA) under clear-sky condition of about −0.014 W/m² to −0.038 W/m² for a global annual average. The corresponding all-sky direct aerosol forcing ranges between −0.011 W/m² and −0.013 W/m². The indirect aerosol effect of ships on climate is found to be far larger than previously estimated. An indirect radiative effect of −0.19 W/m² to −0.60 W/m² (a change in the atmospheric shortwave radiative flux at ToA) is calculated here, contributing 17% to 39% of the total indirect effect of anthropogenic aerosols. This contribution is high because ship emissions are released in regions with frequent low marine clouds in an otherwise clean environment. In addition, the potential impact of particulate matter on the radiation budget is larger over the dark ocean surface than over polluted regions over land.


2012 ◽  
Vol 56 (8) ◽  
pp. 1422-1433 ◽  
Author(s):  
JinHua Tao ◽  
MeiGen Zhang ◽  
LiangFu Chen ◽  
ZiFeng Wang ◽  
Lin Su ◽  
...  

2009 ◽  
Vol 2 (4) ◽  
pp. 1863-1899
Author(s):  
N. Y. Chubarova

Abstract. Using the aerosol optical thickness at 550 nm (τ550) from MODIS (collection 5) combined with the aerosol products from the ground-based AERONET network, key aerosol parameters have been obtained with 1 degree resolution over Europe. Additional tests have revealed a satisfactory quality of the MODIS data, except in a few cases. Quality assured AERONET data are used for evaluating the Angstrom exponent, single scattering albedo and asymmetry factor, and for validating the final aerosol optical thickness in the UV spectral region. A method for extrapolating the aerosol parameters into the UV spectral region is discussed. The aerosol optical thickness distributions are considered together with meteorological fields from NOAA_NCEP_CPC_CAMS_OPI climatology. The τ340 is shown to vary significantly from approximately 0.01 to 0.9 depending on the season and location. Permanent elevated aerosol loading over several industrial areas is observed, which agrees with the output of chemical transport models. Using radiative transfer modeling, monthly mean UV loss due to aerosol was estimated. The absolute decrease in UV indices varies from less than 0.1 to 1.5. The relative UV attenuation has large spatial and temporal variations (from −1% to −17%) with a minimum towards the northwest and maxima over several southern local areas (Northern Italy, etc.) during the warm period.


2009 ◽  
Vol 2 (2) ◽  
pp. 1027-1055
Author(s):  
A. A. Kokhanovsky ◽  
A. S. Prikhach ◽  
I. L. Katsev ◽  
E. P. Zege

Abstract. A new technique to retrieve the particulate matter vertical columns from spaceborne observations is described. The method is based on the measurements of the spectral aerosol optical thickness (AOT). The spectral slope of the derived aerosol optical thickness is used to infer the size of particles, which is needed (along with the absolute value of AOT) to determine corresponding vertical columns. The technique is applied to the case of a cloudless atmosphere over Germany and results are compared with ground-based observations.


2015 ◽  
Vol 06 (11) ◽  
pp. 1293-1307 ◽  
Author(s):  
Abdullah S. Modaihsh ◽  
Fahd N. Al-Barakah ◽  
Mahmoud E. A. Nadeem ◽  
Mohamed O. Mahjoub

Sign in / Sign up

Export Citation Format

Share Document