Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: A case study in Central China

2011 ◽  
Vol 45 (9) ◽  
pp. 1775-1779 ◽  
Author(s):  
Shan Lin ◽  
Javed Iqbal ◽  
Ronggui Hu ◽  
Jinshui Wu ◽  
Jinsong Zhao ◽  
...  
Geoderma ◽  
2021 ◽  
Vol 385 ◽  
pp. 114857
Author(s):  
Aaron J. Glenn ◽  
Alan P. Moulin ◽  
Amal K. Roy ◽  
Henry F. Wilson

2008 ◽  
Vol 88 (2) ◽  
pp. 219-227 ◽  
Author(s):  
D L Burton ◽  
Xinhui Li ◽  
C A Grant

Fertilizer nitrogen use is estimated to be a significant source of nitrous oxide (N2O) emissions in western Canada. These estimates are based primarily on modeled data, as there are relatively few studies that provide direct measures of the magnitude of N2O emissions and the influence of N source on N2O emissions. This study examined the influence of nitrogen source (urea, coated urea, urea with urease inhibitor, and anhydrous ammonia), time of application (spring, fall) and method of application (broadcast, banded) on nitrous oxide emissions on two Black Chernozemic soils located near Winnipeg and Brandon Manitoba. The results of this 3-yr study demonstrated consistently that the rate of fertilizer-induced N2O emissions under Manitoba conditions was lower than the emissions estimated using Intergovernmental Panel on Climate Change (IPCC) coefficients. The Winnipeg site tended to have higher overall N2O emissions (1.7 kg N ha-1) and fertilizer-induced emissions (~0.8% of applied N) than did the Brandon site (0.5 kg N ha-1), representing ~0.2% of applied N. N2O emissions in the first year of the study were much higher than in subsequent years. Both the site and year effects likely reflected differences in annual precipitation. The N2O emissions associated with the use of anhydrous ammonia as a fertilizer source were no greater than emissions with urea. Fall application of nitrogen fertilizer tended to result in marginally greater N2O emissions than did spring application, but these differences were neither large nor consistent. Key words: Nitrogen fertilizer, nitrous oxide emissions, nitrate intensity, anhydrous ammonia, urea


Chemosphere ◽  
1994 ◽  
Vol 28 (7) ◽  
pp. 1401-1415 ◽  
Author(s):  
Changsheng Li ◽  
Stephen E. Frolking ◽  
Robert C. Harriss ◽  
Richard E. Terry

2017 ◽  
Vol 148 ◽  
pp. 329-336 ◽  
Author(s):  
Francis M. Kelliher ◽  
Harold V. Henderson ◽  
Neil R. Cox

2010 ◽  
Vol 7 (6) ◽  
pp. 2039-2050 ◽  
Author(s):  
F. Zhang ◽  
J. Qi ◽  
F. M. Li ◽  
C. S. Li ◽  
C. B. Li

Abstract. As one of the largest land cover types, grassland can potentially play an important role in the ecosystem services of natural resources in China. Nitrous oxide (N2O) is a major greenhouse gas emitted from grasslands. Current N2O inventory at a regional or national level in China relies on the emission factor method, which is based on limited measurements. To improve the accuracy of the inventory by capturing the spatial variability of N2O emissions under the diverse climate, soil and management conditions across China, we adopted an approach by utilizing a process-based biogeochemical model, DeNitrification-DeComposition (DNDC), to quantify N2O emissions from Chinese grasslands. In the present study, DNDC was tested against datasets of N2O fluxes measured at eight grassland sites in China with encouraging results. The validated DNDC was then linked to a GIS database holding spatially differentiated information of climate, soil, vegetation and management at county-level for all the grasslands in the country. Daily weather data for 2000–2007 from 670 meteorological stations across the entire domain were employed to serve the simulations. The modelled results on a national scale showed a clear geographic pattern of N2O emissions. A high-emission strip showed up stretching from northeast to central China, which is consistent with the eastern boundary between the temperate grassland region and the major agricultural regions of China. The grasslands in the western mountain regions, however, emitted much less N2O. The regionally averaged rates of N2O emissions were 0.26, 0.14 and 0.38 kg nitrogen (N) ha−1 y−1 for the temperate, montane and tropical/subtropical grasslands, respectively. The annual mean N2O emission from the total 337 million ha of grasslands in China was 76.5 ± 12.8 Gg N for the simulated years.


Sign in / Sign up

Export Citation Format

Share Document