Contribution of long range transport to local fine particulate matter concerns

2011 ◽  
Vol 45 (16) ◽  
pp. 2730-2735 ◽  
Author(s):  
K.M. Wagstrom ◽  
S.N. Pandis
2020 ◽  
Vol 30 (2) ◽  
Author(s):  
Rirhandzu J. Novela ◽  
Wilson M. Gitari ◽  
Hector Chikoore ◽  
Peter Molnar ◽  
Rabelani Mudzielwana ◽  
...  

This paper presents a chemical characterization of fine particulate matter in air masses passing through Thohoyandou and further determines their sources. Fine particulate matter (PM2.5) was collected and quantified using gravimetric method. X-ray fluorescence, Smoke stain reflectometer, Optical Transmissometer and Scanning Electron Microscopy- Energy Dispersive X-Ray Spectroscopy were used to determine the chemical and morphological composition of the particulate matter. The source apportionment was done using principal component analysis while the HYSPLIT model was used to depict the long-range transport clusters. The mean of concentrations of PM2.5, soot, black carbon and UVPM were 10.9 μg/m3, 0.69x10-5 m-1, 1.22 μg/m3 and 1.40 μg/m3, respectively. A total of 24 elements were detected in the PM2.5 with Pd, Sn, Sb, Mg, Al and Si being the dominant elements. SEM-EDS have shown the presence of irregular, flat and spherical particles which is associated with crustal material and industrial emissions. Source apportionment analysis revealed six major sources of PM2.5 in Thohoyandou namely, crustal materials, industrial emissions, vehicular emissions, urban emissions, fossil fuel combustion and fugitive-Pd. Air parcels that pass-through Thohoyandou were clustered into four. The major pathways were from the SW Indian Ocean, Atlantic Ocean and inland trajectories. Clusters from the ocean are associated with low concentration, while inland clusters are associated with high concentration of PM2.5. The PM2.5 occasionally exceeds the WHO daily guideline in Thohoyandou and the sources of PM2.5 extend beyond the borders. This study recommends that further studies need to be carried out to assess the health impacts of PM2.5 in Thohoyandou.


2007 ◽  
Vol 46 (8) ◽  
pp. 1230-1251 ◽  
Author(s):  
George Kallos ◽  
Marina Astitha ◽  
Petros Katsafados ◽  
Chris Spyrou

Abstract During the past 20 years, organized experimental campaigns as well as continuous development and implementation of air-pollution modeling have led to significant gains in the understanding of the paths and scales of pollutant transport and transformation in the greater Mediterranean region (GMR). The work presented in this paper has two major objectives: 1) to summarize the existing knowledge on the transport paths of particulate matter (PM) in the GMR and 2) to illustrate some new findings related to the transport and transformation properties of PM in the GMR. Findings from previous studies indicate that anthropogenically produced air pollutants from European sources can be transported over long distances, reaching Africa, the Atlantic Ocean, and North America. The PM of natural origin, like Saharan dust, can be transported toward the Atlantic Ocean and North America mostly during the warm period of the year. Recent model simulations and studies in the area indicate that specific long-range transport patterns of aerosols, such as the transport from Asia and the Indian Ocean, central Africa, or America, have negligible or at best limited contribution to air-quality degradation in the GMR when compared with the other sources. Also, new findings from this work suggest that the imposed European Union limits on PM cannot be applicable for southern Europe unless the origin (natural or anthropogenic) of the PM is taken into account. The impacts of high PM levels in the GMR are not limited only to air quality, but also include serious implications for the water budget and the regional climate. These are issues that require extensive investigation because the processes involved are complex, and further model development is needed to include the relevant physicochemical processes properly.


Author(s):  
S. Tsyro ◽  
L. Pirjola ◽  
M. Kulmala ◽  
D. Simpson ◽  
L. Tarrason

Sign in / Sign up

Export Citation Format

Share Document