Corrigendum to “A sensitivity study of separation distances calculated with the Austrian Odour Dispersion Model (AODM)” [Atmos. Environ. 41 (2007) 1725–1735]

2013 ◽  
Vol 67 ◽  
pp. 461-462 ◽  
Author(s):  
Martin Piringer ◽  
Erwin Petz ◽  
Inga Groehn ◽  
Günther Schauberger
2007 ◽  
Vol 41 (8) ◽  
pp. 1725-1735 ◽  
Author(s):  
Martin Piringer ◽  
Erwin Petz ◽  
Inga Groehn ◽  
Günther Schauberger

2009 ◽  
Author(s):  
Riccardo Artoni ◽  
Luca Palmeri ◽  
Alberto Pittarello ◽  
Maurizio Benzo ◽  
Matteo Pardo ◽  
...  

2009 ◽  
Vol 9 (10) ◽  
pp. 3371-3383 ◽  
Author(s):  
J. Cui ◽  
M. Sprenger ◽  
J. Staehelin ◽  
A. Siegrist ◽  
M. Kunz ◽  
...  

Abstract. The particle dispersion model FLEXPART and the trajectory model LAGRANTO are Lagrangian models which are widely used to study synoptic-scale atmospheric air flows such as stratospheric intrusions (SI) and intercontinental transport (ICT). In this study, we focus on SI and ICT events particularly from the North American planetary boundary layer for the Jungfraujoch (JFJ) measurement site, Switzerland, in 2005. Two representative cases of SI and ICT are identified based on measurements recorded at Jungfraujoch and are compared with FLEXPART and LAGRANTO simulations, respectively. Both models well capture the events, showing good temporal agreement between models and measurements. In addition, we investigate the performance of FLEXPART and LAGRANTO on representing SI and ICT events over the entire year 2005 in a statistical way. We found that the air at JFJ is influenced by SI during 19% (FLEXPART) and 18% (LAGRANTO), and by ICT from the North American planetary boundary layer during 13% (FLEXPART) and 12% (LAGRANTO) of the entire year. Through intercomparsion with measurements, our findings suggest that both FLEXPART and LAGRANTO are well capable of representing SI and ICT events if they last for more than 12 h, whereas both have problems on representing short events. For comparison with in-situ observations we used O3 and relative humidity for SI events. As parameters to trace ICT events we used a combination of NOy/CO and CO, however these parameters are not specific enough to distinguish aged air masses by their source regions. Moreover, a sensitivity study indicates that the agreement between models and measurements depends significantly on the threshold values applied to the individual control parameters. Generally, the less strict the thresholds are, the better the agreement between models and measurements. Although the dependence of the agreement on the threshold values is appreciable, it nevertheless confirms the conclusion that both FLEXPART and LAGRANTO are well able to capture SI and ICT events with duration longer than 12 h.


Detritus ◽  
2020 ◽  
pp. 92-99
Author(s):  
Francesca Tagliaferri ◽  
Marzio Invernizzi ◽  
Selena Sironi ◽  
Laura Capelli

Landfills are an important source of odour pollution, potentially causing nuisance to adjacent populations. The most commonly used odour impact assessment for this type of plants usually involves a combination of dynamic olfactometry with dispersion modelling. Despite the advantages associated with the use of dispersion models, there are still some important issues related to their uncertainty. The dispersion model requires the Odour Emission Rate (OER) as input, expressed as units of odour emitted per unit time. Source term characterization and the estimation of the OER are typically the most important steps in the model’s implementation, accounting for the highest contribution to the overall uncertainty. Another important element of uncertainty when modelling emissions from landfill surfaces is the geometrical implementation of the emission source in the dispersion model. This entails the definition of the initial dimensions of the emission, which is critical in the case of large area sources. This paper discusses issues related to uncertainty in the use of dispersion models for the evaluation of landfill odour impacts, particularly focusing on the estimation of the OER and the emission’s initial vertical dimension. This study shows that modelling choices may lead to a variance in the resulting modelled odour concentrations at receptors differing by up to a factor 3. This variability should not cause distrust in the method, but rather indicates the importance of having odour dispersion modelling studies carried out by experts with deep knowledge of the physical-chemical mechanisms underlying atmospheric emissions.


2021 ◽  
Author(s):  
Stefan Stöckl ◽  
Mathias W. Rotach ◽  
Natascha Kljun

<p>Traditional Lagrangian particle dispersion models reflect particles at the zero-plane displacement height and therefore cannot properly take near-ground effects into account. In this study, we investigate whether including the urban canopy layer improves the performance of such a Lagrangian particle dispersion model. Here, spatially averaged flow and turbulence profiles throughout the urban canopy are constructed based on data from the literature (mostly from wind tunnel and numerical modeling studies).</p><p>We apply a first-order approach to test to what degree the explicit inclusion of the urban canopy changes the simulated concentration distributions. In a comprehensive sensitivity study, we show that most of the parameters introduced to describe the turbulence and flow profiles in the canopy have a relatively minor impact on the dispersion (and hence concentration distribution) – despite their inherent uncertainty. In particular, concentration fields are more sensitive to previously existing parameters of the model. One exception is a parameter describing the mean canopy wind speed profile, to which the model is sensitive.</p><p>When compared to data from the BUBBLE tracer experiment, the results show that the inclusion of the urban canopy layer slightly improves the modelled concentration values. The improvement is minor and might likely differ when comparing with other field experiments. However, the key point here is that the increased complexity and added capability of near-ground concentration simulation did not fundamentally change the model performance.</p><p>Ultimately, inclusion of the urban canopy layer will allow the model to be used as the dispersion core for an urban footprint model with footprint estimates near the ground.</p>


Sign in / Sign up

Export Citation Format

Share Document