Assessment of air quality benefits from the national pollution control policy of thermal power plants in China: A numerical simulation

2015 ◽  
Vol 106 ◽  
pp. 288-304 ◽  
Author(s):  
Zhanshan Wang ◽  
Libo Pan ◽  
Yunting Li ◽  
Dawei Zhang ◽  
Jin Ma ◽  
...  
2013 ◽  
Vol 807-809 ◽  
pp. 1388-1396
Author(s):  
Wen Yong Wang ◽  
Bo Jun Ke ◽  
Gao Ping Fu

Based on a detailed survey on the source and volume of SO2 emission over Chengdu economic circle, the third-generation air quality model CMAQ is adopted for simulating the concentration of SO2 in the air over Chengdu Economic Circle. The results show that the hourly average concentration, daily average concentration and annual average concentration of SO2 in air exceed the limit of national standard, and the affected areas respectively account for 0.12%, 0.18% and 0.03% of the total area of the economic circle. Meanwhile, according to the result of calculation, the SO2 emissions of thermal power plants, chemical industry, building materials plants and industrial area sources make the largest contribution to the SO2 concentration in the air, with ratios of 36.15%, 18.67%, 11.81% and 8.34% respectively. thus,main measures to reduce emissions of SO2 in Chengdu economic circle are proposed as follows: focusing on the control of the emissions of SO2 from industrial enterprises, especially in the thermal power plants, chemical industry, building materials plants as well as industrial boilers; joint prevention and control measures should be implemented between the cities, so as to reduce the interaction caused dy emissions of SO2. With the application of the above measures, the total SO2 emissions can be reduced by 50% and the concentration of SO2 in the air can meet with the Class II of national ambient air quality Standard.


Author(s):  
H. K. Romana ◽  
R. P. Singh ◽  
D. P. Shukla

Abstract. The exponentially growing population and related anthropogenic activities have led to modifications in local environment. The change in local environment, evolving pattern of land use, concentrations of greenhouse gases and aerosols alter the energy balance of our climate system. This alteration in climate is leading to premature deaths worldwide. This study analyses the air quality of Singrauli region, Madhya Pradesh, India for the past 15 years. Otherwise known as Urjanchal “the energy capital” of India has been declared as critically polluted by CPCB. The study provides an updated list of thermal power plants in the study area and their emission effects on the local environment. The pollutants analyzed in the study are carbon dioxide, methane, nitrogen dioxide, Sulphur dioxide and particulate matter. Long term remotely sensed data was obtained from NASA Giovanni for past 15 years. Statistical analysis is used to characterize seasonal and annual variations of trace gases in the study area. The study concluded that Methane, Carbon dioxide, Nitrogen dioxide and Sulphur dioxide are on an increasing trend with an average rate of 1.03, 0.99, 2.15 and 1.09 annually. Secondly, Methane & SO2, PM2.5 & NO2, PM10 & NO2, CO2 & Methane and PM2.5 & PM10 have strong correlations with a 95% significance. Furthermore, Methane, SO2 and CO2 exhibit cyclic variation with change in season. The study also indicated that maximum aerosols present in the study area are a result of anthropogenic activities.


Sign in / Sign up

Export Citation Format

Share Document