Numerical study on evolution of ultrafine particles emitted from vehicle exhaust with multi-dynamical behaviors

2021 ◽  
Vol 244 ◽  
pp. 117916
Author(s):  
Guangping Xu ◽  
Jiasong Wang ◽  
Xinqi Qiao
2019 ◽  
Vol 10 (1) ◽  
pp. 294-302
Author(s):  
N.S. Keita ◽  
A. Mehel ◽  
F. Murzyn ◽  
A. Taniere ◽  
B. Arcen ◽  
...  

Author(s):  
Mark R Miller ◽  
David E Newby

Abstract The cardiovascular effects of inhaled particle matter (PM) are responsible for a substantial morbidity and mortality attributed to air pollution. Ultrafine particles, like those in diesel exhaust emissions, are a major source of nanoparticles in urban environments, and it is these particles that have the capacity to induce the most significant health effects. Research has shown that diesel exhaust exposure can have many detrimental effects on the cardiovascular system both acutely and chronically. This review provides an overview of the cardiovascular effects on PM in air pollution, with an emphasis on ultrafine particles in vehicle exhaust. We consider the biological mechanisms underlying these cardiovascular effects of PM and postulate that cardiovascular dysfunction may be implicated in the effects of PM in other organ systems. The employment of multiple strategies to tackle air pollution, and especially ultrafine particles from vehicles, is likely to be accompanied by improvements in cardiovascular health.


2010 ◽  
Vol 10 (19) ◽  
pp. 9615-9630 ◽  
Author(s):  
R. Fernández-Camacho ◽  
S. Rodríguez ◽  
J. de la Rosa ◽  
A. M. Sánchez de la Campa ◽  
M. Viana ◽  
...  

Abstract. Studies on ultrafine particles (diameter < 100nm) and air quality have mostly focused on vehicle exhaust emissions and on new particle formation in "clean" ambient air. Here we present a study focused on the processes contributing to ultrafine particle concentrations in a city (Huelva, SW Spain) placed close to a coastal area where significant anthropogenic emissions of aerosol precursors occur. The overall data analysis shows that two processes predominantly contribute to the number of particles coarser than 2.5 nm: vehicle exhaust emissions and new particle formation due to photo-chemical activity. As typically occurs in urban areas, vehicle exhaust emissions result in high concentrations of black carbon (BC) and particles coarser than 2.5 nm (N) during the morning rush hours. The highest N concentrations were recorded during the 11:00–17:00 h period, under the sea breeze regime, when low BC concentrations were registered and photochemical activity resulted in high O3 levels and in new particle formation in the aerosol precursors' rich inland airflow. In this period, it is estimated that about 80% of the number of particles are linked to sulfur dioxide emissions. The contributions to N of "carbonaceous material and those compounds nucleating/condensing immediately after emission" and of the "new particle formation processes in air masses rich gaseous precursors (e.g. SO2)" were estimated by means of a relatively novel method based on simultaneous measurements of BC and N. A comparison with two recent studies suggests that the daily cycles of "new particle formation" during the inland sea breeze is blowing period seem to be a feature of ultrafine particles in coastal areas of South-west Europe.


2018 ◽  
Vol 111 ◽  
pp. 144-151 ◽  
Author(s):  
Aurelio Tobías ◽  
Ioar Rivas ◽  
Cristina Reche ◽  
Andrés Alastuey ◽  
Sergio Rodríguez ◽  
...  

2013 ◽  
Vol 304 (10) ◽  
pp. L665-L677 ◽  
Author(s):  
Jackie K. W. Chan ◽  
Christoph F. Vogel ◽  
Jaeeun Baek ◽  
Sean D. Kodani ◽  
Ravi S. Uppal ◽  
...  

Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM.


2010 ◽  
Vol 10 (7) ◽  
pp. 17753-17788 ◽  
Author(s):  
R. Fernández-Camacho ◽  
S. Rodríguez ◽  
J. de la Rosa ◽  
A. M. Sánchez de la Campa ◽  
M. Viana ◽  
...  

Abstract. Studies on ultrafine particles and air quality have mostly focused on vehicle exhaust emissions and on new particle formation in "clean" ambient air. Here we present a study of the processes contributing to ultrafine particle concentrations in an urban coastal area (Huelva, SW Spain) where significant anthropogenic emissions of aerosol precursors occur. The overall data analysis shows that two processes predominantly contribute to the number of particles coarser than 2.5 nm: vehicle exhaust emissions and new particle formation due to photo-chemical activity. As typically occurs in urban areas, vehicle exhaust emissions result in high concentrations of black carbon (BC) and particles coarser than 2.5 nm (N) during the morning rush hours. The highest N concentrations were recorded during the 11–17 h period, under the sea breeze regime, when photochemical activity resulted in high O3 levels and new particle formation in the aerosol precursors' rich inland airflow. In this period, it is estimated that about 80% of the number of particles are linked to sulfur dioxide emissions. The contributions to N of "carbonaceous material and those compounds nucleating/condensing immediately after emission" and of the "new particle formation processes in air masses rich gaseous precursors (e.g. SO2)" were estimated by means of a relatively novel method based on simultaneous measurements of BC and N. A comparison with two recent studies suggests that the daily cycles of "new particle formation" during the period when the inland sea breeze is blowing period seem to be a feature of ultrafine particles in coastal areas of South-west Europe.


Sign in / Sign up

Export Citation Format

Share Document