The Roles of Aqueous-Phase Chemistry and Photochemical Oxidation in Oxygenated Organic Aerosols Formation

2021 ◽  
pp. 118738
Author(s):  
Bixin Zhan ◽  
Haobin Zhong ◽  
Hui Chen ◽  
Yunqian Chen ◽  
Xiang Li ◽  
...  
2021 ◽  
Vol 21 (3) ◽  
pp. 1775-1796
Author(s):  
Qing Yu ◽  
Jing Chen ◽  
Weihua Qin ◽  
Siming Cheng ◽  
Yuepeng Zhang ◽  
...  

Abstract. Water-soluble organic carbon (WSOC) accounts for a large proportion of aerosols and plays a critical role in various atmospheric chemical processes. In order to investigate the primary sources and secondary production of WSOC in downtown Beijing, day and night fine particulate matter (PM2.5) samples in January (winter), April (spring), July (summer) and October (autumn) 2017 were collected and analyzed for WSOC and organic tracers in this study. WSOC was dominated by its moderately hydrophilic fraction and showed the highest concentration in January and comparable levels in April, July and October 2017. Some typical organic tracers were chosen to evaluate the emission strength and secondary formation of WSOC. Seasonal variation of the organic tracers suggested significantly enhanced formation of anthropogenic secondary organic aerosols (SOAs) during the sampling period in winter and obviously elevated biogenic SOA formation during the sampling period in summer. These organic tracers were applied into a positive matrix factorization (PMF) model to calculate the source contributions of WSOC as well as its moderately and strongly hydrophilic portions. The secondary sources contributed more than 50 % to WSOC, with higher contributions during the sampling periods in summer (75.1 %) and winter (67.4 %), and the largest contributor was aromatic SOC. In addition, source apportionment results under different pollution levels suggested that controlling biomass burning and aromatic precursors would be effective to reduce WSOC during the haze episodes in cold seasons. The impact factors for the formation of different SOA tracers and total secondary organic carbon (SOC) as well as moderately and strongly hydrophilic SOC were also investigated. The acid-catalyzed heterogeneous or aqueous-phase oxidation appeared to dominate in the SOC formation during the sampling period in winter, while the photochemical oxidation played a more critical role during the sampling period in summer. Moreover, photooxidation played a more critical role in the formation of moderately hydrophilic SOC, while the heterogeneous or aqueous-phase reactions had more vital effects on the formation of strongly hydrophilic SOC.


2001 ◽  
Vol 32 ◽  
pp. 269-270
Author(s):  
J.E. WILLIAMS ◽  
F.J. DENTENER ◽  
A.R. van den BERG

2018 ◽  
Vol 20 (16) ◽  
pp. 10960-10977 ◽  
Author(s):  
Erik H. Hoffmann ◽  
Andreas Tilgner ◽  
Ralf Wolke ◽  
Olaf Böge ◽  
Arno Walter ◽  
...  

An aqueous-phase chemistry mechanism for the oxidation of aromatic compounds in the atmosphere is developed based on available kinetic data. Detailed model studies successfully describe the oxidation and functionalization of monoaromatic compounds in the atmosphere.


2013 ◽  
Vol 13 (3) ◽  
pp. 1177-1192 ◽  
Author(s):  
C. Knote ◽  
D. Brunner

Abstract. Clouds are reaction chambers for atmospheric trace gases and aerosols, and the associated precipitation is a major sink for atmospheric constituents. The regional chemistry-climate model COSMO-ART has been lacking a description of wet scavenging of gases and aqueous-phase chemistry. In this work we present a coupling of COSMO-ART with a wet scavenging and aqueous-phase chemistry scheme. The coupling is made consistent with the cloud microphysics scheme of the underlying meteorological model COSMO. While the choice of the aqueous-chemistry mechanism is flexible, the effects of a simple sulfur oxidation scheme are shown in the application of the coupled system in this work. We give details explaining the coupling and extensions made, then present results from idealized flow-over-hill experiments in a 2-D model setup and finally results from a full 3-D simulation. Comparison against measurement data shows that the scheme efficiently reduces SO2 trace gas concentrations by 0.3 ppbv (−30%) on average, while leaving O3 and NOx unchanged. PM10 aerosol mass was increased by 10% on average. While total PM2.5 changes only little, chemical composition is improved notably. Overestimations of nitrate aerosols are reduced by typically 0.5–1 μg m−3 (up to −2 μg m−3 in the Po Valley) while sulfate mass is increased by 1–1.5 μg m−3 on average (up to 2.5 μg m−3 in Eastern Europe). The effect of cloud processing of aerosols on its size distribution, i.e. a shift towards larger diameters, is observed. Compared against wet deposition measurements the system tends to underestimate the total wet deposited mass for the simulated case study.


2013 ◽  
Vol 13 (10) ◽  
pp. 27641-27675
Author(s):  
Y. J. Li ◽  
D. D. Huang ◽  
H. Y. Cheung ◽  
A. K. Y. Lee ◽  
C. K. Chan

Abstract. We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study demonstrates that aqueous-phase reactions of a methoxy-phenol can lead to substantial amount of secondary organic aerosol (SOA) formation. Given the vast amount of biomass burning input globally, model representation of either the SOA budget or their subsequent effects would not be adequate if the contribution of SOA formation from aqueous-phase reactions of methoxy-phenols is not considered.


2007 ◽  
Vol 7 (3) ◽  
pp. 6803-6842 ◽  
Author(s):  
I. J. George ◽  
A. Vlasenko ◽  
J. G. Slowik ◽  
J. P. D. Abbatt

Abstract. The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl) sebacate (BES) particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) and scanning mobility particle sizer (SMPS) was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0 = 1.26 (±0.04), confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.


2013 ◽  
Vol 13 (1) ◽  
pp. 2913-2954 ◽  
Author(s):  
P. Renard ◽  
F. Siekmann ◽  
A. Gandolfo ◽  
J. Socorro ◽  
G. Salque ◽  
...  

Abstract. It is now accepted that one of the important pathways of Secondary Organic Aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the liquid phase chemical mechanisms leading to macromolecules are still not well understood. For α-dicarbonyl precursors, such as methylglyoxal and glyoxal, radical reactions through OH-oxidation produce oligomers, irreversibly and faster than accretion reactions. Methyl vinyl ketone (MVK) was chosen in the present study as it is an α, β-unsaturated carbonyl that can undergo such reaction pathways in the aqueous phase and forms even high molecular weight oligomers. We present here experiments on the aqueous phase OH-oxidation of MVK, performed under atmospheric relevant conditions. Using NMR and UV absorption spectroscopy, high and ultra-high resolution mass spectrometry, we show that the fast formation of oligomers up to 1800 Da is due to radical oligomerization of MVK, and 13 series of oligomers (out of a total of 26 series) are identified. The influence of atmospherically relevant parameters such as temperature, initial concentrations of MVK and dissolved oxygen are presented and discussed. In agreement with the experimental observations, we propose a chemical mechanism of OH-oxidation of MVK in the aqueous phase that proceeds via radical oligomerization of MVK on the olefin part of the molecule. This mechanism highlights the paradoxical role of dissolved O2: while it inhibits oligomerization reactions, it contributes to produce oligomerization initiator radicals, which rapidly consume O2, thus leading to the supremacy of oligomerization reactions after several minutes of reaction. These processes, together with the large ranges of initial concentrations investigated (60–656 μM of dissolved O2 and 0.2–20 mM of MVK) show the fundamental role that O2 likely plays in atmospheric organic aerosol.


2019 ◽  
Vol 685 ◽  
pp. 976-985 ◽  
Author(s):  
Zhaolian Ye ◽  
Zhenxiu Qu ◽  
Shuaishuai Ma ◽  
Shipeng Luo ◽  
Yantong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document