Performance evaluation of land surface models and cumulus convection schemes in the simulation of Indian summer monsoon using a regional climate model

2017 ◽  
Vol 197 ◽  
pp. 21-41 ◽  
Author(s):  
S. Maity ◽  
A.N.V. Satyanarayana ◽  
M. Mandal ◽  
S. Nayak
2011 ◽  
Vol 8 (4) ◽  
pp. 7091-7136 ◽  
Author(s):  
F. Zabel ◽  
W. Mauser ◽  
T. Marke ◽  
A. Pfeiffer ◽  
G. Zängl ◽  
...  

Abstract. Feedback effects between the land surface and the atmosphere are an important issue in modelling the climate system. Therefore, in order to take land surface heterogeneity adequately into account, a representation of the land surface in sufficient spatial resolution is necessary. In order to analyze the impact of different land surface models on the atmosphere, we analyzed the differences of two physically based land surface models, which evolved from different disciplinary backgrounds, both fully coupled with the regional climate model MM5, providing the atmospheric drivers. While the NOAH-LSM originally was developed for atmosphere applications, PROMET is primarily used as a hydrological land surface model. Both use different physical approaches and different spatial resolutions of 45 km (NOAH) and 1 km (PROMET) respectively, to represent the land surface processes. The parameterization of soil and plant properties in terms of phenological behaviour and water-stress is treated with a higher level of detail in PROMET. Used with same atmospheric drivers over a four-year period for Central Europe, the model differences have strong impacts on simulated evapotranspiration and soil moisture both spatially and temporally. Regions with high proportion of impervious surfaces show the highest differences in simulated evapotranspiration (up to 30 %). Further, PROMET simulations show lower evapotranspiration rates e.g. in the Po Valley, caused mainly by a higher level of vegetation water stress. In order to study feedback effects, PROMET was then bilaterally coupled with MM5. The feedbacks result in increasing near surface air temperature and decreasing precipitation especially in Southern Europe and are a result of regional self-amplification effects due to decreasing soil moisture and increasing vegetation water stress.


2014 ◽  
Vol 11 (3) ◽  
pp. 3005-3047 ◽  
Author(s):  
M. A. D. Larsen ◽  
J. C. Refsgaard ◽  
M. Drews ◽  
M. B. Butts ◽  
K. H. Jensen ◽  
...  

Abstract. In recent years research on the coupling of existing regional climate models and hydrology/land surface models has emerged. A major challenge in this emerging research field is the computational interaction between the models. In this study we present results from a full two-way coupling of the HIRHAM regional climate model over a 4000 km x 2800 km domain in 11 km resolution and the combined MIKE SHE-SWET hydrology and land surface models over the 2500 km2 Skjern river catchment. A total of 26 one-year runs were performed to assess the influence of the data transfer interval (DTI) between the two models and the internal HIRHAM model variability of ten variables. In general, the coupled model simulations exhibit less accurate performance than the uncoupled simulations which is to be expected as both models prior to this study have been individually refined or calibrated to reproduce observations. Four of six output variables from HIRHAM, precipitation, relative humidity, wind speed and air temperature, showed statistically significant improvements in RMSE with a reduced DTI as evaluated in the range of 12–120 min. For these four variables the perturbation induced HIRHAM variability was shown to correspond to 47% of the RMSE improvement when using a DTI of 120 min compared to a DTI of 12 min and the variability resulted in large ranges in simulated precipitation. Also, the DTI was shown to substantially affect computation time. The MIKE SHE energy flux and discharge output variables experienced little impact from the DTI.


1997 ◽  
Vol 25 ◽  
pp. 127-131
Author(s):  
Amanda Lynch ◽  
David McGinnis ◽  
William L. Chapman ◽  
Jeffrey S. Tilley

Different vegetation models impact the atmospheric response of a regional climate model in different ways, and hence have an impact upon the ability of that model to match an observed climatology. Using a multivariate principal-component analysis, we investigate the relationships between several land-surface models (BATS, LSM) coupled to a regional climate model, and observed climate parameters over the North Slope of Alaska. In this application, annual cycle simulations at 20 km spatial resolution are compared with European Centre for Medium-Range Weather Forecasts (ECMWF) climatology. Initial results demonstrate broad agreement between all models; however, small-scale regional variations between land-surface models indicate the strengths and weaknesses of the land-surface treatments in a climate system model. Specifically, we found that the greater surface-moisture availability and temperature-dependent albedo formulation of the LSM model allow for a higher proportion of low-level cloud, and a later, more rapid transition from the winter to the summer regime. Crucial to this transition is the seasonal cycle of incoming solar radiation. These preliminary results indicate the importance of the land-surface hydrologic cycle in modelling the seasonal transitions.


1997 ◽  
Vol 25 ◽  
pp. 127-131
Author(s):  
Amanda Lynch ◽  
David McGinnis ◽  
William L. Chapman ◽  
Jeffrey S. Tilley

Different vegetation models impact the atmospheric response of a regional climate model in different ways, and hence have an impact upon the ability of that model to match an observed climatology. Using a multivariate principal-component analysis, we investigate the relationships between several land-surface models (BATS, LSM) coupled to a regional climate model, and observed climate parameters over the North Slope of Alaska. In this application, annual cycle simulations at 20 km spatial resolution are compared with European Centre for Medium-Range Weather Forecasts (ECMWF) climatology. Initial results demonstrate broad agreement between all models; however, small-scale regional variations between land-surface models indicate the strengths and weaknesses of the land-surface treatments in a climate system model. Specifically, we found that the greater surface-moisture availability and temperature-dependent albedo formulation of the LSM model allow for a higher proportion of low-level cloud, and a later, more rapid transition from the winter to the summer regime. Crucial to this transition is the seasonal cycle of incoming solar radiation. These preliminary results indicate the importance of the land-surface hydrologic cycle in modelling the seasonal transitions.


2014 ◽  
Vol 27 (6) ◽  
pp. 2209-2229 ◽  
Author(s):  
Eun-Soon Im ◽  
Rebecca L. Gianotti ◽  
Elfatih A. B. Eltahir

Abstract This paper presents an evaluation of the performance of the Massachusetts Institute of Technology (MIT) regional climate model (MRCM) in simulating the West African monsoon. The MRCM is built on the Regional Climate Model, version 3 (RegCM3), but with several improvements, including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new surface albedo assignment method, new convective cloud and convective rainfall autoconversion schemes, and a modified scheme for simulating boundary layer height and boundary layer clouds. To investigate the impact of these more physically realistic representations when incorporated into MRCM, a series of experiments were carried out implementing two land surface schemes [IBIS with a new albedo assignment, and the Biosphere–Atmosphere Transfer Scheme (BATS)] and two convection schemes (Grell with the Fritsch–Chappell closure, and Emanuel in both the default form and modified with the new convective cloud cover and a rainfall autoconversion scheme). The analysis primarily focuses on comparing the rainfall characteristics, surface energy balance, and large-scale circulations against various observations. This work documents significant sensitivity in simulation of the West African monsoon to the choices of the land surface and convection schemes. Despite several deficiencies, the simulation with the combination of IBIS and the modified Emanuel scheme with the new convective cloud cover and a rainfall autoconversion scheme shows the best performance with respect to the spatial distribution of rainfall and the dynamics of the monsoon. The coupling of IBIS leads to representations of the surface energy balance and partitioning that show better agreement with observations compared to BATS. The IBIS simulations also reasonably reproduce the dynamical structures of the West African monsoon circulation.


2019 ◽  
Vol 40 (2) ◽  
pp. 1294-1305 ◽  
Author(s):  
Minghao Yang ◽  
Yanke Tan ◽  
Xin Li ◽  
Xiong Chen ◽  
Chao Zhang ◽  
...  

2014 ◽  
Vol 18 (11) ◽  
pp. 4733-4749 ◽  
Author(s):  
M. A. D. Larsen ◽  
J. C. Refsgaard ◽  
M. Drews ◽  
M. B. Butts ◽  
K. H. Jensen ◽  
...  

Abstract. A major challenge in the emerging research field of coupling of existing regional climate models (RCMs) and hydrology/land-surface models is the computational interaction between the models. Here we present results from a full two-way coupling of the HIRHAM RCM over a 4000 km × 2800 km domain at 11 km resolution and the combined MIKE SHE-SWET hydrology and land-surface models over the 2500 km2 Skjern River catchment. A total of 26 one-year runs were performed to assess the influence of the data transfer interval (DTI) between the two models and the internal HIRHAM model variability of 10 variables. DTI frequencies between 12 and 120 min were assessed, where the computational overhead was found to increase substantially with increasing exchange frequency. In terms of hourly and daily performance statistics the coupled model simulations performed less accurately than the uncoupled simulations, whereas for longer-term cumulative precipitation the opposite was found, especially for more frequent DTI rates. Four of six output variables from HIRHAM, precipitation, relative humidity, wind speed and air temperature, showed statistically significant improvements in root-mean-square error (RMSE) by reducing the DTI. For these four variables, the HIRHAM RMSE variability corresponded to approximately half of the influence from the DTI frequency and the variability resulted in a large spread in simulated precipitation. Conversely, DTI was found to have only a limited impact on the energy fluxes and discharge simulated by MIKE SHE.


Sign in / Sign up

Export Citation Format

Share Document