Automated subsurface defects' detection using point cloud reconstruction from infrared images

2021 ◽  
Vol 129 ◽  
pp. 103829
Author(s):  
Marco Puliti ◽  
Giovanni Montaggioli ◽  
Alessandro Sabato
Author(s):  
L. Liu ◽  
Z. Wei ◽  
X. Liu ◽  
Z. Yang

In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner) point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT,EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.


2021 ◽  
Vol 7 (5) ◽  
pp. 80
Author(s):  
Ahmet Firintepe ◽  
Carolin Vey ◽  
Stylianos Asteriadis ◽  
Alain Pagani ◽  
Didier Stricker

In this paper, we propose two novel AR glasses pose estimation algorithms from single infrared images by using 3D point clouds as an intermediate representation. Our first approach “PointsToRotation” is based on a Deep Neural Network alone, whereas our second approach “PointsToPose” is a hybrid model combining Deep Learning and a voting-based mechanism. Our methods utilize a point cloud estimator, which we trained on multi-view infrared images in a semi-supervised manner, generating point clouds based on one image only. We generate a point cloud dataset with our point cloud estimator using the HMDPose dataset, consisting of multi-view infrared images of various AR glasses with the corresponding 6-DoF poses. In comparison to another point cloud-based 6-DoF pose estimation named CloudPose, we achieve an error reduction of around 50%. Compared to a state-of-the-art image-based method, we reduce the pose estimation error by around 96%.


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Author(s):  
Snehal S. Rajole ◽  
J. V. Shinde

In this paper we proposed unique technique which is adaptive to noisy images for eye gaze detection as processing noisy sclera images captured at-a-distance and on-the-move has not been extensively investigated. Sclera blood vessels have been investigated recently as an efficient biometric trait. Capturing part of the eye with a normal camera using visible-wavelength images rather than near infrared images has provoked research interest. This technique involves sclera template rotation alignment and a distance scaling method to minimize the error rates when noisy eye images are captured at-a-distance and on-the move. The proposed system is tested and results are generated by extensive simulation in java.


Sign in / Sign up

Export Citation Format

Share Document