Mapping self-reports of working memory deficits to executive dysfunction in Fragile X Mental Retardation 1 (FMR1) gene premutation carriers asymptomatic for FXTAS

2010 ◽  
Vol 73 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Cary S. Kogan ◽  
Kim M. Cornish
NeuroImage ◽  
2013 ◽  
Vol 65 ◽  
pp. 288-298 ◽  
Author(s):  
Jun Yi Wang ◽  
David Hessl ◽  
Christine Iwahashi ◽  
Katherine Cheung ◽  
Andrea Schneider ◽  
...  

RNA Biology ◽  
2007 ◽  
Vol 4 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Marta Zumwalt ◽  
Anna Ludwig ◽  
Paul J. Hagerman ◽  
Thorsten Dieckmann

2019 ◽  
Vol 15 (4) ◽  
pp. 251-258 ◽  
Author(s):  
Dragana Protic ◽  
Maria J. Salcedo-Arellano ◽  
Jeanne Barbara Dy ◽  
Laura A. Potter ◽  
Randi J. Hagerman

Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability with prevalence rates estimated to be 1:5,000 in males and 1:8,000 in females. The increase of >200 Cytosine Guanine Guanine (CGG) repeats in the 5’ untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene results in transcriptional silencing on the FMR1 gene with a subsequent reduction or absence of fragile X mental retardation protein (FMRP), an RNA binding protein involved in the maturation and elimination of synapses. In addition to intellectual disability, common features of FXS are behavioral problems, autism, language deficits and atypical physical features. There are still no currently approved curative therapies for FXS, and clinical management continues to focus on symptomatic treatment of comorbid behaviors and psychiatric problems. Here we discuss several treatments that target the neurobiological pathway abnormal in FXS. These medications are clinically available at present and the data suggest that these medications can be helpful for those with FXS.


2016 ◽  
Vol 10 ◽  
Author(s):  
Eleonora Napoli ◽  
Catherine Ross-Inta ◽  
Gyu Song ◽  
Sarah Wong ◽  
Randi Hagerman ◽  
...  

2009 ◽  
Vol 9 (4) ◽  
pp. 116-118 ◽  
Author(s):  
Lisa R. Merlin

Correction of Fragile X Syndrome in Mice. Dölen G, Osterweil E, Rao BSS, Smith GB, Auerbach BD, Chattarji S, Bear MF. Neuron 2007;56:955–962. Fragile X syndrome (FXS) is the most common form of heritable mental retardation and the leading identified cause of autism. FXS is caused by transcriptional silencing of the FMR1 gene that encodes the fragile X mental retardation protein (FMRP), but the pathogenesis of the disease is unknown. According to one proposal, many psychiatric and neurological symptoms of FXS result from unchecked activation of mGluR5, a metabotropic glutamate receptor. To test this idea we generated Fmr1 mutant mice with a 50% reduction in mGluR5 expression and studied a range of phenotypes with relevance to the human disorder. Our results demonstrate that mGluR5 contributes significantly to the pathogenesis of the disease, a finding that has significant therapeutic implications for fragile X and related developmental disorders. Limbic Epileptogenesis in a Mouse Model of Fragile X Syndrome. Qiu LF, Lu TJ, Hu XL, Yi YH, Liao WP, Xiong ZQ. Cereb Cortex 2009 in press. (doi:10.1093/cercor/bhn163) Fragile X syndrome (FXS), caused by silencing of the Fmr1 gene, is the most common form of inherited mental retardation. Epilepsy is reported to occur in 20–25% of individuals with FXS. However, no overall increased excitability has been reported in Fmr1 knockout (KO) mice, except for increased sensitivity to auditory stimulation. Here, we report that kindling increased the expressions of Fmr1 mRNA and protein in the forebrain of wild-type (WT) mice. Kindling development was dramatically accelerated in Fmr1 KO mice, and Fmr1 KO mice also displayed prolonged electrographic seizures during kindling and more severe mossy fiber sprouting after kindling. The accelerated rate of kindling was partially repressed by inhibiting N-methyl-D-aspartic acid receptor (NMDAR) with MK-801 or mGluR5 receptor with 2-methyl-6-(phenylethynyl)-pyridine (MPEP). The rate of kindling development in WT was not effected by MPEP, however, suggesting that FMRP normally suppresses epileptogenic signaling downstream of metabotropic glutamate receptors. Our findings reveal that FMRP plays a critical role in suppressing limbic epileptogenesis and predict that the enhanced susceptibility of patients with FXS to epilepsy is a direct consequence of the loss of an important homeostatic factor that mitigates vulnerability to excessive neuronal excitation.


2015 ◽  
Vol 30 (11) ◽  
pp. 2686-2692 ◽  
Author(s):  
Ann Schufreider ◽  
Dana B. McQueen ◽  
Sang Mee Lee ◽  
Rachel Allon ◽  
Meike L. Uhler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document