scholarly journals The haem–copper oxygen reductase of Desulfovibrio vulgaris contains a dihaem cytochrome c in subunit II

2008 ◽  
Vol 1777 (12) ◽  
pp. 1528-1534 ◽  
Author(s):  
Susana A.L. Lobo ◽  
Claúdia C. Almeida ◽  
João N. Carita ◽  
Miguel Teixeira ◽  
Lígia M. Saraiva
2004 ◽  
Vol 11 (1) ◽  
pp. 93-96
Author(s):  
Naoki Shibata ◽  
Kyoko Suto ◽  
Eiko Ichimura ◽  
Kazutaka Yoshimura ◽  
Kenji Muneo ◽  
...  

Microbiology ◽  
2011 ◽  
Vol 157 (9) ◽  
pp. 2720-2732 ◽  
Author(s):  
O. Lamrabet ◽  
L. Pieulle ◽  
C. Aubert ◽  
F. Mouhamar ◽  
P. Stocker ◽  
...  

Although Desulfovibrio vulgaris Hildenborough (DvH) is a strictly anaerobic bacterium, it is able to consume oxygen in different cellular compartments, including extensive periplasmic O2 reduction with hydrogen as electron donor. The genome of DvH revealed the presence of cydAB and cox genes, encoding a quinol oxidase bd and a cytochrome c oxidase, respectively. In the membranes of DvH, we detected both quinol oxygen reductase [inhibited by heptyl-hydroxyquinoline-N-oxide (HQNO)] and cytochrome c oxidase activities. Spectral and HPLC data for the membrane fraction revealed the presence of o-, b- and d-type haems, in addition to a majority of c-type haems, but no a-type haem, in agreement with carbon monoxide-binding analysis. The cytochrome c oxidase is thus of the cc(o/b)o 3 type, a type not previously described. The monohaem cytochrome c 553 is an electron donor to the cytochrome c oxidase; its encoding gene is located upstream of the cox operon and is 50-fold more transcribed than coxI encoding the cytochrome c oxidase subunit I. Even when DvH is grown under anaerobic conditions in lactate/sulfate medium, the two terminal oxidase-encoding genes are expressed. Furthermore, the quinol oxidase bd-encoding genes are more highly expressed than the cox genes. The cox operon exhibits an atypical genomic organization, with the gene coxII located downstream of coxIV. The occurrence of these membrane-bound oxygen reductases in other strictly anaerobic Deltaproteobacteria is discussed.


1987 ◽  
Vol 33 (11) ◽  
pp. 1006-1010 ◽  
Author(s):  
Gerrit Voordouw ◽  
Helen M. Kent ◽  
John R. Postgate

Cloned genes encoding cytochrome c3 and hydrogenase from Desulfovibrio vulgaris Hildenborough have been used to probe the genomes of 15 other desulfovibrios. The D. vulgaris strains Wandle and Brockhurst Hill cannot be distinguished from the Hildenborough strain by Southern hybridization using either probe, indicating similar genomes. Desulfovibrio vulgaris Groningen is completely different and lacks homologous cytochrome c3 and hydrogenase genes. The genomes of D. vulgaris ssp. oxamicus Monticello and D. desulfuricans strains El Agheila Z, Berre sol, and Canet 41 contain genes encoding a homologous but not identical periplasmic hydrogenase and cytochrome c3. Weak hybridization was observed with the cytochrome c3 gene probe for genomes of seven other sulfate-reducing bacteria, which reflects the known amino acid sequence divergence of cytochrome c3 in Desulfovibrio. The hydrogenase gene probe shows weak hybridization to the DNA from two strains of D. salexigens only, while the gene may be absent from D. vulgaris Groningen, two strains of D. africanus, D. thermophilus, D. gigas, and D. desulfuricans strains Norway and Teddington R. In desulfovibrios carrying cryptic plasmids the cytochrome c3 and hydrogenase genes are apparently chromosomal.


2017 ◽  
Vol 1865 (5) ◽  
pp. 481-487 ◽  
Author(s):  
Yu Sugimoto ◽  
Yuki Kitazumi ◽  
Osamu Shirai ◽  
Koji Nishikawa ◽  
Yoshiki Higuchi ◽  
...  

1994 ◽  
Vol 225 (1) ◽  
pp. 311-319 ◽  
Author(s):  
Marc F. J. M. Verhagen ◽  
Antonio J. Pierik ◽  
Ronnie B. G. Wolbert ◽  
Leonard F. Mallee ◽  
Wilfried G. B. Voorhorst ◽  
...  

1993 ◽  
Vol 51 (1-2) ◽  
pp. 28 ◽  
Author(s):  
W.R. Hagen ◽  
M.F.J.M. Verhagen ◽  
A.J. Pierik ◽  
R.B.G. Wolbert ◽  
L.F. Mallée ◽  
...  

2007 ◽  
Vol 11 (01) ◽  
pp. 66-73
Author(s):  
Shin Iida ◽  
Noriyuki Asakura ◽  
Kenji Tabata ◽  
Ichiro Okura ◽  
Toshiaki Kamachi

Cytochrome c3 from Desulfovibrio vulgaris (Miyazaki) is an electron transfer protein containing four hemes per molecule. Its physiological electron transfer partner is the hydrogenase which catalyzes reversible oxidation of hydrogen. The complex formation between cytochrome c3 and hydrogenase is caused by electrostatic interaction, because cytochrome c3 is a basic protein and hydrogenase is an acidic protein. As cytochrome c3 has 20 lysine residues among 108 amino acids, the positive charges of some lysine residues may play an important role in the interaction with hydrogenase. To clarify the role of positive charge of lysine residue, the positive charge was changed to neutral or negative charge using chemical modification and site-directed mutagenesis. When the positive charges around heme IV were changed, the hydrogen evolution rate with hydrogenase decreased. The affinity between hydrogenase and mutated cytochrome c3 (K57Q, K57E, K72Q, K94Q, K94E) were not affected. On the other hand, the affinity of K72E cytochrome c3 for hydrogenase was very low. These results suggest that the positive charge around heme IV plays an important role in the electrostatic interaction with hydrogenase in hydrogen evolution.


Sign in / Sign up

Export Citation Format

Share Document