scholarly journals ATP concentration change in Caenorhabditis elegans

2010 ◽  
Vol 1797 ◽  
pp. 60-61
Author(s):  
Jun-ichi Kishikawa ◽  
Makoto Fujikawa ◽  
Hiromi Imamura ◽  
Kayo Yasuda ◽  
Naoaki Ishii ◽  
...  
2022 ◽  
Vol 119 (3) ◽  
pp. e2106974119
Author(s):  
Shingo Hiroki ◽  
Yuichi Iino

The nematode Caenorhabditis elegans learns the concentration of NaCl and moves toward the previously experienced concentration. In this behavior, the history of NaCl concentration change is reflected in the level of diacylglycerol and the activity of protein kinase C, PKC-1, in the gustatory sensory neuron ASER and determines the direction of migration. Here, through a genetic screen, we found that the activation of Gq protein compensates for the behavioral defect of the loss-of-function mutant of pkc-1. We found that Gq activation results in hyperproduction of diacylglycerol in ASER sensory neuron, which leads to recruitment of TPA-1, an nPKC isotype closely related to PKC-1. Unlike the pkc-1 mutants, loss of tpa-1 did not obviously affect migration directions in the conventional learning assay. This difference was suggested to be due to cooperative functions of the C1 and C2-like domains of the nPKC isotypes. Furthermore, we investigated how the compensatory capability of tpa-1 contributes to learning and found that learning was less robust in the context of cognitive decline or environmental perturbation in tpa-1 mutants. These results highlight how two nPKC isotypes contribute to the learning system.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


1998 ◽  
Vol 3 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Glenda A Walker ◽  
David W Walker ◽  
Gordon J Lithgow

2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
K Wongchai ◽  
A Schlotterer ◽  
J Lin ◽  
M Morcos ◽  
T Klein ◽  
...  

2008 ◽  
Vol 3 (S 1) ◽  
Author(s):  
Y Ibrahim ◽  
A Schlotterer ◽  
G Kukudov ◽  
P Humpert ◽  
G Rudofsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document