The glycomes of Caenorhabditis elegans and other model organisms

2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.

Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 571-580 ◽  
Author(s):  
William B Raich ◽  
Celine Moorman ◽  
Clay O Lacefield ◽  
Jonah Lehrer ◽  
Dusan Bartsch ◽  
...  

Abstract The pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1. We found these genes to be widely expressed and to localize to distinct subcellular compartments. We isolated deletion alleles in all three genes and show that loss of mbk-1, the gene most closely related to DYRK1A, causes no obvious defects, while another gene, mbk-2, is essential for viability. The overexpression of DYRK1A in Down syndrome led us to examine the effects of overexpression of its C. elegans ortholog mbk-1. We found that animals containing additional copies of the mbk-1 gene display behavioral defects in chemotaxis toward volatile chemoattractants and that the extent of these defects correlates with mbk-1 gene dosage. Using tissue-specific and inducible promoters, we show that additional copies of mbk-1 can impair olfaction cell-autonomously in mature, fully differentiated neurons and that this impairment is reversible. Our results suggest that increased gene dosage of human DYRK1A in trisomy 21 may disrupt the function of fully differentiated neurons and that this disruption is reversible.


Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 712-724 ◽  
Author(s):  
Dave Pilgrim

A genetic approach was taken to identify new transposable element Tc1 -dependent polymorphisms on the left end of linkage group III in the nematode Caenorhabditis elegans. The cloning of the genomic DNA surrounding the Tc1 allowed the selection of overlapping clones (from the collection being used to assemble the physical map of the C. elegans genome). A contig of approximately 600–800 kbp in the region has been identified, the genetic map of the region has been refined, and 10 new RFLPs as well as at least four previously characterized genetic loci have been positioned onto the physical map, to the resolution of a few cosmids. This analysis demonstrated the ability to combine physical and genetic mapping for the rapid analysis of large genomic regions (0.5–1 Mbp) in genetically amenable eukaryotes.Key words: Caenorhabditis elegans, genome analysis, RFLP, physical map, genetic map.


1996 ◽  
Vol 317 (3) ◽  
pp. 721-729 ◽  
Author(s):  
Johanna VEIJOLA ◽  
Pia ANNUNEN ◽  
Peppi KOIVUNEN ◽  
Antony P. PAGE ◽  
Taina PIHLAJANIEMI ◽  
...  

Protein disulphide isomerase (PDI; EC 5.3.4.1) is a multifunctional polypeptide that is identical to the β subunit of prolyl 4-hydroxylases. We report here on the cloning and expression of the Caenorhabditis elegans PDI/β polypeptide and its isoform. The overall amino acid sequence identity and similarity between the processed human and C. elegans PDI/β polypeptides are 61% and 85% respectively, and those between the C. elegans PDI/β polypeptide and the PDI isoform 46% and 73%. The isoform differs from the PDI/β and ERp60 polypeptides in that its N-terminal thioredoxin-like domain has an unusual catalytic site sequence -CVHC-. Expression studies in insect cells demonstrated that the C. elegans PDI/β polypeptide forms an active prolyl 4-hydroxylase α2β2 tetramer with the human α subunit and an αβ dimer with the C. elegans α subunit, whereas the C. elegans PDI isoform formed no prolyl 4-hydroxylase with either α subunit. Removal of the 32-residue C-terminal extension from the C. elegans α subunit totally eliminated αβ dimer formation. The C. elegans PDI/β polypeptide formed less prolyl 4-hydroxylase with both the human and C. elegans α subunits than did the human PDI/β polypeptide, being particularly ineffective with the C. elegans α subunit. Experiments with hybrid polypeptides in which the C-terminal regions had been exchanged between the human and C. elegans PDI/β polypeptides indicated that differences in the C-terminal region are one reason, but not the only one, for the differences in prolyl 4-hydroxylase formation between the human and C. elegans PDI/β polypeptides. The catalytic properties of the C. elegans prolyl 4-hydroxylase αβ dimer were very similar to those of the vertebrate type II prolyl 4-hydroxylase tetramer, including the Km for the hydroxylation of long polypeptide substrates.


2008 ◽  
Vol 19 (3) ◽  
pp. 785-796 ◽  
Author(s):  
Claire Lecroisey ◽  
Edwige Martin ◽  
Marie-Christine Mariol ◽  
Laure Granger ◽  
Yannick Schwab ◽  
...  

In Caenorhabditis elegans, mutations of the dystrophin homologue, dys-1, produce a peculiar behavioral phenotype (hyperactivity and a tendency to hypercontract). In a sensitized genetic background, dys-1 mutations also lead to muscle necrosis. The dyc-1 gene was previously identified in a genetic screen because its mutation leads to the same phenotype as dys-1, suggesting that the two genes are functionally linked. Here, we report the detailed characterization of the dyc-1 gene. dyc-1 encodes two isoforms, which are expressed in neurons and muscles. Isoform-specific RNAi experiments show that the absence of the muscle isoform, and not that of the neuronal isoform, is responsible for the dyc-1 mutant phenotype. In the sarcomere, the DYC-1 protein is localized at the edges of the dense body, the nematode muscle adhesion structure where actin filaments are anchored and linked to the sarcolemma. In yeast two-hybrid assays, DYC-1 interacts with ZYX-1, the homologue of the vertebrate focal adhesion LIM domain protein zyxin. ZYX-1 localizes at dense bodies and M-lines as well as in the nucleus of C. elegans striated muscles. The DYC-1 protein possesses a highly conserved 19 amino acid sequence, which is involved in the interaction with ZYX-1 and which is sufficient for addressing DYC-1 to the dense body. Altogether our findings indicate that DYC-1 may be involved in dense body function and stability. This, taken together with the functional link between the C. elegans DYC-1 and DYS-1 proteins, furthermore suggests a requirement of dystrophin function at this structure. As the dense body shares functional similarity with both the vertebrate Z-disk and the costamere, we therefore postulate that disruption of muscle cell adhesion structures might be the primary event of muscle degeneration occurring in the absence of dystrophin, in C. elegans as well as vertebrates.


2012 ◽  
Vol 40 (4) ◽  
pp. 656-660 ◽  
Author(s):  
Jeanna M. Wheeler ◽  
Chris R. Guthrie ◽  
Brian C. Kraemer

Tauopathies are neurodegenerative diseases, including AD (Alzheimer's disease) and FTLD-T (tau-positive frontotemporal lobar degeneration), with shared pathology presenting as accumulation of detergent-insoluble hyperphosphorylated tau deposits in the central nervous system. The currently available treatments for AD address only some of the symptoms, and do not significantly alter the progression of the disease, namely the development of protein aggregates and loss of functional neurons. The development of effective treatments for various tauopathies will require the identification of common mechanisms of tau neurotoxicity, and pathways that can be modulated to protect against neurodegeneration. Model organisms, such as Caenorhabditis elegans, provide methods for identifying novel genes and pathways that are involved in tau pathology and may be exploited for treatment of various tauopathies. In the present paper, we summarize data regarding characterization of MSUT2 (mammalian suppressor of tau pathology 2), a protein identified in a C. elegans tauopathy model and subsequently shown to modify tau toxicity in mammalian cell culture via the effects on autophagy pathways. MSUT2 represents a potential drug target for prevention of tau-related neurodegeneration.


2007 ◽  
Vol 178 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Anjon Audhya ◽  
Arshad Desai ◽  
Karen Oegema

The endoplasmic reticulum (ER) is a contiguous network of interconnected membrane sheets and tubules. The ER is differentiated into distinct domains, including the peripheral ER and nuclear envelope. Inhibition of two ER proteins, Rtn4a and DP1/NogoA, was previously shown to inhibit the formation of ER tubules in vitro. We show that the formation of ER tubules in vitro also requires a Rab family GTPase. Characterization of the 29 Caenorhabditis elegans Rab GTPases reveals that depletion of RAB-5 phenocopies the defects in peripheral ER structure that result from depletion of RET-1 and YOP-1, the C. elegans homologues of Rtn4a and DP1/NogoA. Perturbation of endocytosis by other means did not affect ER structure; the role of RAB-5 in ER morphology is thus independent of its well-studied requirement for endocytosis. RAB-5 and YOP-1/RET-1 also control the kinetics of nuclear envelope disassembly, which suggests an important role for the morphology of the peripheral ER in this process.


2020 ◽  
Author(s):  
Zachary C. Stevenson ◽  
Megan J. Moerdyk-Schauwecker ◽  
Brennen Jamison ◽  
Patrick C. Phillips

AbstractPrecision genome editing for model organisms has revolutionized functional analysis and validation of a wide variety of molecular systems. To date, the capacity to insert transgenes into the model nematode Caenorhabditis elegans has focused on utilizing either transposable elements or CRISPR-based safe harbor strategies. These methods require laborious screening processes that often result in false positives from heritable extrachromosomal arrays or rely on co-CRISPR markers to identify likely edited individuals. As a result, verification of transgene insertion requires anti-array selection screening methods or extensive PCR genotyping respectively. These approaches also rely on cloning plasmids for the addition of transgenes. Here, we present a novel safe harbor CRISPR-based integration strategy that utilizes engineered insertion locations containing a synthetic guide RNA target and a split-selection system to eliminate false positives from array formation, thereby providing integration-specific selection. This approach allows the experimenter to confirm an integration event has taken place without molecular validation or anti-array screening methods, and is capable of producing integrated transgenic lines in as little as five days post-injection. To further increase the speed of generating transgenic lines, we also utilized the C. elegans native homology-based formation of extra-chromosomal arrays to assemble transgenes in-situ, removing the cloning step. We show that complete transgenes can be made and inserted into our split-selection safe harbor locations starting from PCR products, providing a clone-free and molecular-validation-free strategy for single-copy transgene integration. Overall, this combination of approaches provides an economical and rapid system for generating highly reproducible complex transgenics in C. elegans.


2019 ◽  
Author(s):  
Johannes Zimmermann ◽  
Nancy Obeng ◽  
Wentao Yang ◽  
Barbara Pees ◽  
Carola Petersen ◽  
...  

AbstractThe microbiome is generally assumed to have a substantial influence on the biology of multicellular organisms. The exact functional contributions of the microbes are often unclear and cannot be inferred easily from 16S rRNA genotyping, which is commonly used for taxonomic characterization of the bacterial associates. In order to bridge this knowledge gap, we here analyzed the metabolic competences of the native microbiome of the model nematode Caenorhabditis elegans. We integrated whole genome sequences of 77 bacterial microbiome members with metabolic modelling and experimental characterization of bacterial physiology. We found that, as a community, the microbiome can synthesize all essential nutrients for C. elegans. Both metabolic models and experimental analyses further revealed that nutrient context can influence how bacteria interact within the microbiome. We identified key bacterial traits that are likely to influence the microbe’s ability to colonize C. elegans (e.g., pyruvate fermentation to acetoin) and the resulting effects on nematode fitness (e.g., hydroxyproline degradation). Considering that the microbiome is usually neglected in the comprehensive research on this nematode, the resource presented here will help our understanding of C. elegans biology in a more natural context. Our integrative approach moreover provides a novel, general framework to dissect microbiome-mediated functions.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1966
Author(s):  
Rabin Dhakal ◽  
Mohammad Yosofvand ◽  
Mahsa Yavari ◽  
Ramzi Abdulrahman ◽  
Ryan Schurr ◽  
...  

Knowledge regarding complex radiation responses in biological systems can be enhanced using genetically amenable model organisms. In this manuscript, we reviewed the use of the nematode, Caenorhabditis elegans (C. elegans), as a model organism to investigate radiation’s biological effects. Diverse types of experiments were conducted on C. elegans, using acute and chronic exposure to different ionizing radiation types, and to assess various biological responses. These responses differed based on the type and dose of radiation and the chemical substances in which the worms were grown or maintained. A few studies compared responses to various radiation types and doses as well as other environmental exposures. Therefore, this paper focused on the effect of irradiation on C. elegans, based on the intensity of the radiation dose and the length of exposure and ways to decrease the effects of ionizing radiation. Moreover, we discussed several studies showing that dietary components such as vitamin A, polyunsaturated fatty acids, and polyphenol-rich food source may promote the resistance of C. elegans to ionizing radiation and increase their life span after irradiation.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
M. Koopman ◽  
L. Janssen ◽  
E. A. A. Nollen

Abstract Background Optogenetics allows the experimental manipulation of excitable cells by a light stimulus without the need for technically challenging and invasive procedures. The high degree of spatial, temporal, and intensity control that can be achieved with a light stimulus, combined with cell type-specific expression of light-sensitive ion channels, enables highly specific and precise stimulation of excitable cells. Optogenetic tools have therefore revolutionized the study of neuronal circuits in a number of models, including Caenorhabditis elegans. Despite the existence of several optogenetic systems that allow spatial and temporal photoactivation of light-sensitive actuators in C. elegans, their high costs and low flexibility have limited wide access to optogenetics. Here, we developed an inexpensive, easy-to-build, modular, and adjustable optogenetics device for use on different microscopes and worm trackers, which we called the OptoArm. Results The OptoArm allows for single- and multiple-worm illumination and is adaptable in terms of light intensity, lighting profiles, and light color. We demonstrate OptoArm’s power in a population-based multi-parameter study on the contributions of motor circuit cells to age-related motility decline. We found that individual components of the neuromuscular system display different rates of age-dependent deterioration. The functional decline of cholinergic neurons mirrors motor decline, while GABAergic neurons and muscle cells are relatively age-resilient, suggesting that rate-limiting cells exist and determine neuronal circuit ageing. Conclusion We have assembled an economical, reliable, and highly adaptable optogenetics system which can be deployed to address diverse biological questions. We provide a detailed description of the construction as well as technical and biological validation of our set-up. Importantly, use of the OptoArm is not limited to C. elegans and may benefit studies in multiple model organisms, making optogenetics more accessible to the broader research community.


Sign in / Sign up

Export Citation Format

Share Document