scholarly journals Single-molecule study of redox control involved in establishing the spinach plastocyanin-cytochrome bf electron transfer complex

2019 ◽  
Vol 1860 (7) ◽  
pp. 591-599
Author(s):  
Guy E. Mayneord ◽  
Cvetelin Vasilev ◽  
Lorna A. Malone ◽  
David J.K. Swainsbury ◽  
C. Neil Hunter ◽  
...  
2004 ◽  
Vol 71 ◽  
pp. 1-14
Author(s):  
David Leys ◽  
Jaswir Basran ◽  
François Talfournier ◽  
Kamaldeep K. Chohan ◽  
Andrew W. Munro ◽  
...  

TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.


2007 ◽  
Vol 63 (a1) ◽  
pp. s131-s131
Author(s):  
G. Hagelüeken ◽  
D. W. Heinz ◽  
B. Tümmler ◽  
W. D. Schubert

ACS Nano ◽  
2013 ◽  
Vol 7 (6) ◽  
pp. 5391-5401 ◽  
Author(s):  
Emil Wierzbinski ◽  
Ravindra Venkatramani ◽  
Kathryn L. Davis ◽  
Silvia Bezer ◽  
Jing Kong ◽  
...  

2017 ◽  
Vol 8 (8) ◽  
pp. 5345-5355 ◽  
Author(s):  
Donghoon Han ◽  
Garrison M. Crouch ◽  
Kaiyu Fu ◽  
Lawrence P. Zaino III ◽  
Paul W Bohn

The ability of zero-mode waveguides (ZMW) to guide light into subwavelength-diameter nanoapertures has been exploited for studying electron transfer dynamics in zeptoliter-volume nanopores under single-molecule occupancy conditions.


2015 ◽  
Vol 184 ◽  
pp. 101-115 ◽  
Author(s):  
Lawrence P. Zaino ◽  
Dane A. Grismer ◽  
Donghoon Han ◽  
Garrison M. Crouch ◽  
Paul W. Bohn

Zero-mode waveguides (ZMW) have the potential to be powerful confinement tools for studying electron transfer dynamics at single molecule occupancy conditions. Flavin mononucleotide contains an isoalloxazine chromophore, which is fluorescent in the oxidized state (FMN) while the reduced state (FMNH2) exhibits dramatically lower light emission, i.e. a dark-state. This allows fluorescence emission to report the redox state of single FMN molecules, an observation that has been used previously to study single electron transfer events in surface-immobilized flavins and flavoenzymes, e.g. sarcosine oxidase, by direct wide-field imaging of ZMW arrays. Single molecule electron transfer dynamics have now been extended to the study of freely diffusing molecules using fluorescence measurements of Au ZMWs under single occupancy conditions. The Au in the ZMW serves both as an optical cladding layer and as the working electrode for potential control, thereby accessing single molecule electron transfer dynamics at μM concentrations. Consistent with expectations, the probability of observing single reduced molecules increases as the potential is scanned negative, Eappl < Eeq, and the probability of observing emitting oxidized molecules increases at Eappl > Eeq. Different single molecules exhibit different electron transfer properties as reflected in the position of Eeq and the distribution of Eeq among a population of FMN molecules. Two types of actively-controlled electroluminescence experiments were used: chronofluorometry experiments, in which the potential is alternately stepped between oxidizing and reducing potentials, and cyclic potential sweep fluorescence experiments, analogous to cyclic voltammetry, these latter experiments exhibiting a dramatic scan rate dependence with the slowest scan rates showing distinct intermediate states that are stable over a range of potentials. These states are assigned to flavosemiquinone species that are stabilized in the special environment of the ZMW nanopore.


2013 ◽  
Vol 117 (42) ◽  
pp. 13015-13028 ◽  
Author(s):  
Dominik Haenni ◽  
Franziska Zosel ◽  
Luc Reymond ◽  
Daniel Nettels ◽  
Benjamin Schuler

Sign in / Sign up

Export Citation Format

Share Document