scholarly journals Visualizing common deletion of mitochondrial DNA-augmented mitochondrial reactive oxygen species generation and apoptosis upon oxidative stress

Author(s):  
Tsung-I Peng ◽  
Pei-Ru Yu ◽  
Jing-Yi Chen ◽  
Hung-Li Wang ◽  
Hong-Yeuh Wu ◽  
...  
2021 ◽  
pp. 074823372110110
Author(s):  
Shabnoor Iqbal ◽  
Farhat Jabeen ◽  
Abdul Shakoor Chaudhry ◽  
Muhammad Ajmal Shah ◽  
Gaber El-Saber Batiha

Nickel nanoparticles (Ni-NPs) are widely used for multiple purposes in industries. Ni-NPs exposure is detrimental to ecosystems owing to widespread use, and so their toxicity is important to consider for real-world applications. This review mainly focuses on the notable pathophysiological activities of Ni-NPs in various research models. Ni-NPs are stated to be more toxic than bulk forms because of their larger surface area to volume ratio and are reported to provoke toxicity through reactive oxygen species generation, which leads to the upregulation of nuclear factor-κB and promotes further signaling cascades. Ni-NPs may contribute to provoking oxidative stress and apoptosis. Hypoxia-inducible factor 1α and mitogen-activated protein kinases pathways are involved in Ni-NPs associated toxicity. Ni-NPs trigger the transcription factors p-p38, p-JNK, p-ERK1/2, interleukin (IL)-3, TNF-α, IL-13, Fas, Cyt c, Bax, Bid protein, caspase-3, caspase-8, and caspase-9. Moreover, Ni-NPs have an occupational vulnerability and were reported to induce lung-related disorders owing to inhalation. Ni-NPs may cause serious effects on reproduction as Ni-NPs induced deleterious effects on reproductive cells (sperm and eggs) in animal models and provoked hormonal alteration. However, recent studies have provided limited knowledge regarding the important checkpoints of signaling pathways and less focused on the toxic limitation of Ni-NPs in humans, which therefore needs to be further investigated.


Author(s):  
Young Sook Kim ◽  
Heung Joo Yuk ◽  
Dong-Seon Kim

Oxidative stress is a major contributor to muscle aging and loss of muscle tissue. Jakyakgamcho-tang has been used in traditional Eastern medicine to treat muscle pain. Here, we compared various solvent-based Jakyakgamcho-tang extracts in terms of their effects against hydrogen peroxide-induced oxidative stress in murine C2C12 skeletal muscle cells. Total phenolic content and total flavonoid content in 30% ethanol extracts of Jakyakgamcho-tang were higher than those of water extracts of Jakyakgamcho-tang. Ethanol extracts of Jakyakgamcho-tang had stronger antioxidant and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and 2,2´-diphenyl-1-picrylhydrazyl-scavenging activity than water extracts of Jakyakgamcho-tang. The ethanol extract of Jakyakgamcho-tang inhibited peroxide-induced cell viability and intracellular reactive oxygen species generation more effectively than the water extract of Jakyakgamcho-tang in a dose-dependent manner. These results suggest that the ethanol extract of Jakyakgamcho-tang is relatively more efficacious at protecting against oxidative stress-induced muscle cell death because it prevents reactive oxygen species generation in C2C12 cells. Moreover, the current study indicated that the effective dose of the ethanol extract of Jakyakgamcho-tang required to alleviate muscle pain might be lower than that required for Jakyakgamcho-tang.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Kiran Napa ◽  
Andrea C. Baeder ◽  
Jeffrey E. Witt ◽  
Sarah T. Rayburn ◽  
Madison G. Miller ◽  
...  

Objective. Oral inflammatory pathologies are linked to increased oxidative stress, thereby partly explaining their relevance in the etiology of systemic disorders. The purpose of this work was to determine the degree to which LPS from Porphyromonas gingivalis, the primary pathogen related to oral inflammation, altered gingival mitochondrial function and reactive oxygen species generation. Methods. Human gingival fibroblast (HGF-1) cells were treated with lipopolysaccharide of P. gingivalis. Mitochondrial function was determined via high-resolution respirometry. Results. LPS-treated HGF-1 cells had significantly higher mitochondrial complex IV and higher rates of mitochondrial respiration. However, this failed to translate into greater ATP production, as ATP production was paradoxically diminished with LPS treatment. Nevertheless, production of the reactive H2O2 was elevated with LPS treatment. Conclusions. LPS elicits an increase in gingival cell mitochondria content, with a subsequent increase in reactive oxygen species production (i.e., H2O2), despite a paradoxical reduction in ATP generation. These findings provide an insight into the nature of oxidative stress in oral inflammatory pathologies.


2006 ◽  
Vol 291 (5) ◽  
pp. C897-C908 ◽  
Author(s):  
Shyamali Basuroy ◽  
Sujoy Bhattacharya ◽  
Dilyara Tcheranova ◽  
Yan Qu ◽  
Raymond F. Regan ◽  
...  

Tumor necrosis factor-α (TNF-α) causes oxidative stress and apoptosis in a variety of cell types. Heme oxygenase (HO) degrades heme to bilirubin, an antioxidant, and carbon monoxide (CO), a cell cycle modulator, and a vasodilator. Newborn pig cerebral microvascular endothelial cells (CMVEC) highly express constitutive HO-2. We investigated the role of HO-2 in protection against TNF-α-induced apoptosis in cerebral vascular endothelium. In CMVEC from mice and newborn pigs, 15 ng/ml TNF-α alone, or with 10 μg/ml cycloheximide (CHX) caused apoptosis detected by nuclear translocation of p65 NF-κB, caspase-3 activation, DNA fragmentation, cell-cell contact destabilization, and cell detachment. TNF-α did not induce HO-1 expression in CMVEC. CMVEC from HO-2 knockout mice showed greater sensitivity to apoptosis caused by serum deprivation and TNF-α than did wild-type mice. TNF-α increased reactive oxygen species generation, including hydrogen peroxide and superoxide radicals, as detected by dihydrorhodamine-123 and dihydroethidium. The TNF-α response was inhibited by superoxide dismutase and catalase suggesting apoptosis is oxidative stress related. Inhibition of endogenous HO-2 in newborn pig CMVEC increased oxidative stress and exaggerated apoptosis caused by serum deprivation and TNF-α. In HO-1-overexpressing CMVEC (HO-1 selective induction by cobalt portophyrin), TNF-α did not cause apoptosis. A CO-releasing compound, CORM-A1, and bilirubin blocked TNF-α-induced reactive oxygen species accumulation and apoptosis consistent with the antioxidant and antiapoptotic roles of the end products of HO activity. We conclude that HO-2 is critical for protection of cerebrovascular endothelium against apoptotic changes induced by oxidative stress and cytokine-mediated inflammation.


Sign in / Sign up

Export Citation Format

Share Document