mitochondrial transcription factor a
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 42)

H-INDEX

44
(FIVE YEARS 5)

Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Vanessa Cristina de Oliveira ◽  
Kelly Cristine Santos Roballo ◽  
Clésio Gomes Mariano Junior ◽  
Sarah Ingrid Pinto Santos ◽  
Fabiana Fernandes Bressan ◽  
...  

The mitochondrial transcription factor A (TFAM) is considered a key factor in mitochondrial DNA (mtDNA) copy number. Given that the regulation of active copies of mtDNA is still not fully understood, we investigated the effects of CRISPR-Cas9 gene editing of TFAM in human embryonic kidney (HEK) 293T cells on mtDNA copy number. The aim of this study was to generate a new in vitro model by CRISPR-Cas9 system by editing the TFAM locus in HEK293T cells. Among the resulting single-cell clones, seven had high mutation rates (67–96%) and showed a decrease in mtDNA copy number compared to control. Cell staining with Mitotracker Red showed a reduction in fluorescence in the edited cells compared to the non-edited cells. Our findings suggest that the mtDNA copy number is directly related to TFAM control and its disruption results in interference with mitochondrial stability and maintenance.


2021 ◽  
Vol 22 (23) ◽  
pp. 13059
Author(s):  
Carlos Cardanho-Ramos ◽  
Vanessa Alexandra Morais

Neurons rely mostly on mitochondria for the production of ATP and Ca2+ homeostasis. As sub-compartmentalized cells, they have different pools of mitochondria in each compartment that are maintained by a constant mitochondrial turnover. It is assumed that most mitochondria are generated in the cell body and then travel to the synapse to exert their functions. Once damaged, mitochondria have to travel back to the cell body for degradation. However, in long cells, like motor neurons, this constant travel back and forth is not an energetically favourable process, thus mitochondrial biogenesis must also occur at the periphery. Ca2+ and ATP levels are the main triggers for mitochondrial biogenesis in the cell body, in a mechanism dependent on the Peroxisome-proliferator-activated γ co-activator-1α-nuclear respiration factors 1 and 2-mitochondrial transcription factor A (PGC-1α-NRF-1/2-TFAM) pathway. However, even though of extreme importance, very little is known about the mechanisms promoting mitochondrial biogenesis away from the cell body. In this review, we bring forward the evoked mechanisms that are at play for mitochondrial biogenesis in the cell body and periphery. Moreover, we postulate that mitochondrial biogenesis may vary locally within the same neuron, and we build upon the hypotheses that, in the periphery, local protein synthesis is responsible for giving all the machinery required for mitochondria to replicate themselves.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jinsong Luo ◽  
Hong Liu ◽  
Daniel K. Jun Li ◽  
Bin Song ◽  
Yi Zhang

Abstract Background Mitochondrial transcription factor A (TFAM) is associated with a number of neurodegenerative diseases and also with asthma. TFAM deficiency-induced mitochondrial DNA stress primes the antiviral innate immune response in mouse embryonic fibroblasts. However, the role of TFAM in asthma related inflammation remains obscure. The purpose of this study was to investigate the regulatory mechanism of TFAM in asthma. Results In this study, we overexpressed TFAM in human lung epithelial cells (A549), then obtained the TFAM-regulated transcriptome by Illumina sequencing technology. Transcriptome analysis revealed that TFAM overexpression down-regulated and up-regulated the expression of 642 and 169 differentially expressed genes (DEGs), respectively. The TFAM-repressed genes were strongly enriched in cytokine-mediated signaling pathway, type I interferon- and INF-γ-mediated signaling pathways, and viral response pathways. We also revealed that 2563 alternative splicing events in 1796 alternative splicing genes (ASGs) were de-regulated upon TFAM overexpression. These TFAM-responding ASGs were enriched in DNA repair, nerve growth factor receptor signaling pathway, and also transcription regulation. Further analysis revealed that the promoters of TFAM-repressed DEGs were enriched by DNA binding motifs of transcription factors whose alternative splicing was regulated by TFAM. Conclusions These findings suggest that TFAM regulates not only immune response gene expression in human lung epithelial cells, but also pre-mRNA alternative splicing which may mediate transcriptional regulation; this TFAM-centered gene regulation network could be targeted in developing therapies against various diseases.


2021 ◽  
Vol 45 (6) ◽  
pp. 853-865
Author(s):  
Jin-Ho Koh ◽  
Yong-Woon Kim ◽  
Dae-Yun Seo ◽  
Tae-Seo Sohn

Tissues actively involved in energy metabolism are more likely to face metabolic challenges from bioenergetic substrates and are susceptible to mitochondrial dysfunction, leading to metabolic diseases. The mitochondria receive signals regarding the metabolic states in cells and transmit them to the nucleus or endoplasmic reticulum (ER) using calcium (Ca2+) for appropriate responses. Overflux of Ca2+ in the mitochondria or dysregulation of the signaling to the nucleus and ER could increase the incidence of metabolic diseases including insulin resistance and type 2 diabetes mellitus. Mitochondrial transcription factor A (Tfam) may regulate Ca2+ flux via changing the mitochondrial membrane potential and signals to other organelles such as the nucleus and ER. Since Tfam is involved in metabolic function in the mitochondria, here, we discuss the contribution of Tfam in coordinating mitochondria-ER activities for Ca2+ flux and describe the mechanisms by which Tfam affects mitochondrial Ca2+ flux in response to metabolic challenges.


Author(s):  
Himabindu Beeram ◽  
Tumu Venkat Reddy ◽  
Suresh Govatati ◽  
Swapna Siddamalla ◽  
Mamata Deenadayal ◽  
...  

Aim: The Mitochondrial transcription factor A (TFAM) and mitochondrial (mt) DNA copy number variations are known to contribute in disease development. Genetic factors play an important role in the development of endometriosis. Therefore, this case–control study aimed to analyze the association of TFAM+35G/C polymorphism and mitochondrial copy number with the risk of endometriosis in Indian women. Study Design: This study was carried out on 418 subjects including 200 endometriosis cases and 218 controls. Methodology: Genotyping of TFAM +35G/C polymorphism (rs1937) was carried out by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Quantification of mtDNA copy number was carried out using a real time quantitative polymerase chain reaction (qRT-PCR). Place and Duration of Study: Department of Biochemistry, Osmania University, 2014 to 2020. Results: TFAM genotype as well as allele distributions were all in Hardy-Weinberg equilibrium. The results indicated a significant reduction of GG genotype frequency (P=0.009), high ‘C’ allele frequency (P=0.017) and significantly decreased mtDNA copy number in endometriosis cases compared to controls (P= 0.0001). Conclusion: Present study revealed a statistically significant association of decreased GG genotype of TFAM +35G/C polymorphism and mtDNA copy number with the risk of developing endometriosis in Indian women.


2021 ◽  
Vol 4 (11) ◽  
pp. e202101093
Author(s):  
Taku Kuwabara ◽  
Fumio Ishikawa ◽  
Masataka Ikeda ◽  
Tomomi Ide ◽  
Terumi Kohwi-Shigematsu ◽  
...  

Special AT-rich sequence binding protein-1 (SATB1) is localized to the nucleus and remodels chromatin structure in T cells. SATB1-deficient CD4 T cells cannot respond to TCR stimulation; however, the cause of this unresponsiveness is to be clarified. Here, we demonstrate that SATB1 is indispensable to proper mitochondrial functioning and necessary for the activation of signal cascades via the TCR in CD4 T cells. Naïve SATB1-deficient CD4 T cells contain fewer mitochondria than WT T cells, as the former do not express mitochondrial transcription factor A (TFAM). Impaired mitochondrial function in SATB1-deficient T cells subverts mitochondrial ROS production and SHP-1 inactivation by constitutive oxidization. Ectopic TFAM expression increases mitochondrial mass and mitochondrial ROS production and rescues defects in the antigen-specific response in the SATB1-deficient T cells. Thus, SATB1 is vital for maintaining mitochondrial mass and function by regulating TFAM expression, which is necessary for TCR signaling.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1246
Author(s):  
Krystie Chew ◽  
Linlin Zhao

Mitochondria have a plethora of functions in eukaryotic cells, including cell signaling, programmed cell death, protein cofactor synthesis, and various aspects of metabolism. The organelles carry their own genomic DNA, which encodes transfer and ribosomal RNAs and crucial protein subunits in the oxidative phosphorylation system. Mitochondria are vital for cellular and organismal functions, and alterations of mitochondrial DNA (mtDNA) have been linked to mitochondrial disorders and common human diseases. As such, how the cell maintains the integrity of the mitochondrial genome is an important area of study. Interactions of mitochondrial proteins with mtDNA damage are critically important for repairing, regulating, and signaling mtDNA damage. Mitochondrial transcription factor A (TFAM) is a key player in mtDNA transcription, packaging, and maintenance. Due to the extensive contact of TFAM with mtDNA, it is likely to encounter many types of mtDNA damage and secondary structures. This review summarizes recent research on the interaction of human TFAM with different forms of non-canonical DNA structures and discusses the implications on mtDNA repair and packaging.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255355
Author(s):  
Rintaro Kuroda ◽  
Kaoru Tominaga ◽  
Katsumi Kasashima ◽  
Kenji Kuroiwa ◽  
Eiji Sakashita ◽  
...  

Mitochondrial dysfunction is significantly associated with neurological deficits and age-related neurological diseases. While mitochondria are dynamically regulated and properly maintained during neurogenesis, the manner in which mitochondrial activities are controlled and contribute to these processes is not fully understood. Mitochondrial transcription factor A (TFAM) contributes to mitochondrial function by maintaining mitochondrial DNA (mtDNA). To clarify how mitochondrial dysfunction affects neurogenesis, we induced mitochondrial dysfunction specifically in murine neural stem cells (NSCs) by inactivating Tfam. Tfam inactivation in NSCs resulted in mitochondrial dysfunction by reducing respiratory chain activities and causing a severe deficit in neural differentiation and maturation both in vivo and in vitro. Brain tissue from Tfam-deficient mice exhibited neuronal cell death primarily at layer V and microglia were activated prior to cell death. Cultured Tfam-deficient NSCs showed a reduction in reactive oxygen species produced by the mitochondria. Tfam inactivation during neurogenesis resulted in the accumulation of ATF4 and activation of target gene expression. Therefore, we propose that the integrated stress response (ISR) induced by mitochondrial dysfunction in neurogenesis is activated to protect the progression of neurodegenerative diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zheng Fu ◽  
Joseph W. Dean ◽  
Lifeng Xiong ◽  
Michael W. Dougherty ◽  
Kristen N. Oliff ◽  
...  

AbstractRORγt+ lymphocytes, including interleukin 17 (IL-17)-producing gamma delta T (γδT17) cells, T helper 17 (Th17) cells, and group 3 innate lymphoid cells (ILC3s), are important immune regulators. Compared to Th17 cells and ILC3s, γδT17 cell metabolism and its role in tissue homeostasis remains poorly understood. Here, we report that the tissue milieu shapes splenic and intestinal γδT17 cell gene signatures. Conditional deletion of mitochondrial transcription factor A (Tfam) in RORγt+ lymphocytes significantly affects systemic γδT17 cell maintenance and reduces ILC3s without affecting Th17 cells in the gut. In vivo deletion of Tfam in RORγt+ lymphocytes, especially in γδT17 cells, results in small intestine tissue remodeling and increases small intestine length by enhancing the type 2 immune responses in mice. Moreover, these mice show dysregulation of the small intestine transcriptome and metabolism with less body weight but enhanced anti-helminth immunity. IL-22, a cytokine produced by RORγt+ lymphocytes inhibits IL-13-induced tuft cell differentiation in vitro, and suppresses the tuft cell-type 2 immune circuit and small intestine lengthening in vivo, highlighting its key role in gut tissue remodeling.


Sign in / Sign up

Export Citation Format

Share Document