Structural and biochemical analysis of 1-Cys peroxiredoxin ScPrx1 from Saccharomyces cerevisiae mitochondria

2020 ◽  
Vol 1864 (12) ◽  
pp. 129706
Author(s):  
Chang-Cheng Li ◽  
Mei-jia Yang ◽  
Jing Yang ◽  
Mei Kang ◽  
Tao Li ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e103956 ◽  
Author(s):  
Uta Gey ◽  
Cornelia Czupalla ◽  
Bernard Hoflack ◽  
Udo Krause ◽  
Gerhard Rödel

1995 ◽  
Vol 307 (3) ◽  
pp. 657-661 ◽  
Author(s):  
S Prieto ◽  
F Bouillaud ◽  
E Rial

We have recently reported that ATP induces an uncoupling pathway in Saccharomyces cerevisiae mitochondria [Prieto, Bouillaud, Ricquier and Rial (1992) Eur. J. Biochem. 208, 487-491]. The presence of this pathway would explain the reported low efficiency of oxidative phosphorylation in S. cerevisiae, and may represent one of the postulated energy-dissipating mechanisms present in these yeasts. In this paper we demonstrate that ATP exerts its action in two steps: first, at low ATP/Pi ratios, it increases the respiratory-chain activity, probably by altering the kinetic properties of cytochrome c oxidase. Second, at higher ATP/Pi ratios, an increase in membrane permeability leads to a collapse in membrane potential. The ATP effect on cytochrome c oxidase corroborates a recent report showing that ATP interacts specifically with yeast cytochrome oxidase, stimulating its activity [Taanman and Capaldi (1993) J. Biol. Chem. 268, 18754-18761].


1982 ◽  
Vol 2 (1) ◽  
pp. 1-10
Author(s):  
K A Bostian ◽  
J M Lemire ◽  
H O Halvorson

The synthesis of repressible acid phosphatase in Saccharomyces cerevisiae was examined under conditions of blocked derepression as described by Toh-e et al. (Mol. Gen. Genet. 162:139-149, 1978). Based on a genetic and biochemical analysis of the phenomenon these authors proposed a new regulatory model for acid phosphatase expression involving a simultaneous interaction of regulatory factors in the control of structural gene transcription. We demonstrate here that under growth conditions that fail to produce acid phosphatase the enzyme is readily inactivated. Furthermore, we demonstrate under these conditions the production of acid phosphatase mRNA which is active both in vitro and in vivo in the synthesis of enzyme. This eliminates any step prior to translation of acid phosphatase polypeptide as an explanation for the phenomenon. We interpret our results for the block in appearance of acid phosphatase as a result of both deaccelerated growth and cellular biosynthesis during derepression, accompanied by an enhanced instability of the enzyme.


Sign in / Sign up

Export Citation Format

Share Document