scholarly journals Structure and function of the AAA+ nucleotide binding pocket

Author(s):  
Petra Wendler ◽  
Susanne Ciniawsky ◽  
Malte Kock ◽  
Sebastian Kube
2020 ◽  
Vol 98 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Nirujah Balasingam ◽  
Harland E. Brandon ◽  
Joseph A. Ross ◽  
Hans-Joachim Wieden ◽  
Nehal Thakor

P-loop NTPases comprise one of the major superfamilies of nucleotide binding proteins, which mediate a variety of cellular processes, such as mRNA translation, signal transduction, cell motility, and growth regulation. In this review, we discuss the structure and function of two members of the ancient Obg-related family of P-loop GTPases: human Obg-like ATPase 1 (hOLA1), and its bacterial/plant homolog, YchF. After a brief discussion of nucleotide binding proteins in general and the classification of the Obg-related family in particular, we discuss the sequence and structural features of YchF and hOLA1. We then explore the various functional roles of hOLA1 in mammalian cells during stress response and cancer progression, and of YchF in bacterial cells. Finally, we directly compare and contrast the structure and function of hOLA1 with YchF before summarizing the future perspectives of hOLA1 research. This review is timely, given the variety of recent studies aimed at understanding the roles of hOLA1 and YchF in such critical processes as cellular-stress response, oncogenesis, and protein synthesis.


2019 ◽  
Vol 26 (7) ◽  
pp. 1062-1078 ◽  
Author(s):  
Maite Rocío Arana ◽  
Guillermo Alejandro Altenberg

Background:Proteins that belong to the ATP-binding cassette superfamily include transporters that mediate the efflux of substrates from cells. Among these exporters, P-glycoprotein and MRP1 are involved in cancer multidrug resistance, protection from endo and xenobiotics, determination of drug pharmacokinetics, and the pathophysiology of a variety of disorders. Objective:To review the information available on ATP-binding cassette exporters, with a focus on Pglycoprotein, MRP1 and related proteins. We describe tissue localization and function of these transporters in health and disease, and discuss the mechanisms of substrate transport. We also correlate recent structural information with the function of the exporters, and discuss details of their molecular mechanism with a focus on the nucleotide-binding domains. Methods: Evaluation of selected publications on the structure and function of ATP-binding cassette proteins. Conclusions:Conformational changes on the nucleotide-binding domains side of the exporters switch the accessibility of the substrate-binding pocket between the inside and outside, which is coupled to substrate efflux. However, there is no agreement on the magnitude and nature of the changes at the nucleotide- binding domains side that drive the alternate-accessibility. Comparison of the structures of Pglycoprotein and MRP1 helps explain differences in substrate selectivity and the bases for polyspecificity. P-glycoprotein substrates are hydrophobic and/or weak bases, and polyspecificity is explained by a flexible hydrophobic multi-binding site that has a few acidic patches. MRP1 substrates are mostly organic acids, and its polyspecificity is due to a single bipartite binding site that is flexible and displays positive charge.


Biochimie ◽  
2009 ◽  
Vol 91 (11-12) ◽  
pp. 1509-1517 ◽  
Author(s):  
Anupam Pradhan ◽  
Abhai K. Tripathi ◽  
Prashant V. Desai ◽  
Prasenjit K. Mukherjee ◽  
Mitchell A. Avery ◽  
...  

2006 ◽  
Vol 282 (7) ◽  
pp. 4453-4462 ◽  
Author(s):  
Frank Visser ◽  
Valeria Valsecchi ◽  
Lucio Annunziato ◽  
Jonathan Lytton

K+-dependent Na+/Ca2+ exchangers (NCKX) catalyze cytosolic Ca2+ extrusion and are particularly important for neuronal Ca2+ signaling. Of the five mammalian isoforms, the detailed functional characteristics have only been reported for NCKX1 and -2. In the current study, the functional characteristics of recombinant NCKX3 and -4 expressed in HEK293 cells were determined and compared with those of NCKX2. Although the apparent affinities of the three isoforms for Ca2+ and Na+ were similar, NCKX3 and -4 displayed ∼40-fold higher affinities for K+ ions than NCKX2. Functional analysis of various NCKX2 mutants revealed that mutation of Thr-551 to Ala, the corresponding residue in NCKX4, resulted in an apparent K+ affinity shift to one similar to that of NCKX4 without a parallel shift in apparent Ca2+ affinity. In the converse situation, when Gln-476 of NCKX4 was converted to Lys, the corresponding residue in NCKX2, both the K+ and Ca2+ affinities were reduced. These results indicate that the apparently low K+ affinity of NCKX2 requires a Thr residue at position 551 that may reduce the conformational flexibility and/or K+ liganding strength of side-chain moieties on critical neighboring residues. This interaction appears to be specific to the structural context of the NCKX2 K+ binding pocket, because it was not possible to recreate the K+-specific low affinity phenotype with reciprocal mutations in NCKX4. The results of this study provide important information about the structure and function of NCKX proteins and will be critical to understanding their roles in neuronal Ca2+ signaling.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


Sign in / Sign up

Export Citation Format

Share Document