scholarly journals Isosteviol prevents the prolongation of action potential in hypertrophied cardiomyoctyes by regulating transient outward potassium and L-type calcium channels

2017 ◽  
Vol 1859 (10) ◽  
pp. 1872-1879 ◽  
Author(s):  
Zhuo Fan ◽  
Nanying Lv ◽  
Xiao Luo ◽  
Wen Tan
1984 ◽  
Vol 81 (14) ◽  
pp. 4353-4357 ◽  
Author(s):  
A. de Blas ◽  
M. Adler ◽  
M. Shih ◽  
P. K. Chiang ◽  
G. L. Cantoni ◽  
...  

2005 ◽  
Vol 89 (6) ◽  
pp. 3741-3756 ◽  
Author(s):  
J.M.A.M. Kusters ◽  
M.M. Dernison ◽  
W.P.M. van Meerwijk ◽  
D.L. Ypey ◽  
A.P.R. Theuvenet ◽  
...  

2001 ◽  
Vol 90 (5) ◽  
pp. 1720-1728 ◽  
Author(s):  
Xue-Qian Zhang ◽  
Lian-Qin Zhang ◽  
Bradley M. Palmer ◽  
Yuk-Chow Ng ◽  
Timothy I. Musch ◽  
...  

Two electrophysiological manifestations of myocardial infarction (MI)-induced myocyte hypertrophy are prolongation of action potential duration (APD) and reduction of transient outward current ( I to) density. Because high-intensity sprint training (HIST) ameliorated myocyte hypertrophy and improved myocyte Ca2+ homeostasis and contractility after MI, the present study evaluated whether 6–8 wk of HIST would shorten the prolonged APD and improve the depressed I to in post-MI myocytes. There were no differences in resting membrane potential and action potential amplitude (APA) measured in myocytes isolated from sham-sedentary (Sed), MI-Sed, and MI-HIST groups. Times required for repolarization to 50 and 90% APA were significantly ( P < 0.001) prolonged in MI-Sed myocytes. HIST reduced times required for repolarization to 50 and 90% APA to values observed in Sham-Sed myocytes. The fast and slow components of I towere significantly ( P < 0.0001) reduced in MI-Sed myocytes. HIST significantly ( P < 0.001) enhanced the fast and slow components of I to in MI myocytes, although not to levels observed in Sham-Sed myocytes. There were no significant differences in steady-state I toinactivation and activation parameters among Sham-Sed, MI-Sed, and MI-HIST myocytes. Likewise, recovery from time-dependent inactivation was also similar among the three groups. We suggest that normalization of APD after MI by HIST may be mediated by restoration of I to toward normal levels.


1996 ◽  
Vol 1 (3) ◽  
pp. 229-234 ◽  
Author(s):  
Regan T. Pallandi ◽  
Nigel H. Lovell ◽  
Terence J. Campbell

Background Dofetilide is a new class III antiarrhythmic agent with demonstrated efficacy in ventricular and atrial tachyarrhythmias. We investigated its class HI actions and their modulation by stimulation rate in rabbit atrial myocardium. Methods and Results Standard microelectrode techniques were used to record action potentials from rabbit atrial tissue at varying stimulation rates. Dofetilide produced a dose-dependent prolongation of action potential duration at concentrations from 1 nM to 1 μM at an interstimulus interval of 1000 ms. Action potential duration at 90% repolarization (action potential duration) was prolonged from 116 ± 11.7 ms in control solutions to 148 ± 13.9 ms at 1nM dofetilide and 186 ± 49.3 ms at 1 μM dofetilide ( P < .05 for 1 nM vs control; P < .01 for 1 μM vs control). Reduction of interstimulus interval to 500 ms had no significant effect on action potential duration prolongation by dofetilide. At faster rates than this, and particularly at an interstimulus interval less than 330 ms, a marked “reverse rate dependence” of the class III effect was observed. Specifically, the high therapeutic concentration of 10 nM showed no effect on action potential duration at interstimulus interval of 250 ms or 200 ms, and even at a concentration of 30 nM, the small class III effect was no longer statistically significant at these rates. Conclusion Dofetilide prolongs action potential duration in rabbit atrial myocardium, but this effect is significantly attenuated at stimulation rates above 2 Hz.


1997 ◽  
Vol 78 (6) ◽  
pp. 3484-3488 ◽  
Author(s):  
Huanmian Chen ◽  
Nevin A. Lambert

Chen, Huanmian and Nevin A. Lambert. Inhibition of dendritic calcium influx by activation of G-protein–coupled receptors in the hippocampus. J. Neurophysiol. 78: 3484–3488, 1997. Gi proteins inhibit voltage-gated calcium channels and activate inwardly rectifying K+ channels in hippocampal pyramidal neurons. The effect of activation of G-protein–coupled receptors on action potential-evoked calcium influx was examined in pyramidal neuron dendrites with optical and extracellular voltage recording. We tested the hypotheses that 1) activation of these receptors would inhibit calcium channels in dendrites; 2) hyperpolarization resulting from K+ channel activation would deinactivate low-threshold, T-type calcium channels on dendrites, increasing calcium influx mediated by these channels; and 3) activation of these receptors would inhibit propagation of action potentials into dendrites, and thus indirectly decrease calcium influx. Activation of adenosine receptors, which couple to Gi proteins, inhibited calcium influx in cell bodies and proximal dendrites without inhibiting action-potential propagation into the proximal dendrites. Inhibition of dendritic calcium influx was not changed in the presence of 50 μM nickel, which preferentially blocks T-type channels, suggesting influx through these channels is not increased by activation of G-proteins. Adenosine inhibited propagation of action potentials into the distal branches of pyramidal neuron dendrites, leading to a three- to fourfold greater inhibition of calcium influx in the distal dendrites than in the soma or proximal dendrites. These results suggest that voltage-gated calcium channels are inhibited in pyramidal neuron dendrites, as they are in cell bodies and terminals and thatG-protein–mediated inhibition of action-potential propagation can contribute substantially to inhibition of dendritic calcium influx.


1996 ◽  
Vol 27 (2) ◽  
pp. 374-375
Author(s):  
Jügen Schreieck ◽  
Viktor Gjini ◽  
Michael Korth ◽  
Albert Schömig ◽  
Claus Schmitt

2012 ◽  
Vol 32 (35) ◽  
pp. 12228-12236 ◽  
Author(s):  
C. Deleuze ◽  
F. David ◽  
S. Behuret ◽  
G. Sadoc ◽  
H.-S. Shin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document