Molecular dynamics simulations of a lipovitellin-derived amphiphilic β-sheet homologous to apoB-100 β-sheets at a hydrophobic decane–water interface

2008 ◽  
Vol 1784 (11) ◽  
pp. 1668-1675 ◽  
Author(s):  
Artturi Koivuniemi ◽  
Petri T. Kovanen ◽  
Marja T. Hyvönen
Soft Matter ◽  
2019 ◽  
Vol 15 (41) ◽  
pp. 8402-8411 ◽  
Author(s):  
Georgia Tsagkaropoulou ◽  
Finian J. Allen ◽  
Stuart M. Clarke ◽  
Philip J. Camp

Molecular-dynamics simulations are used to explore bilayers formed by simple ionic surfactants at the mica–water interface, and to shed light on experimental observations.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 850
Author(s):  
Yu Zou ◽  
Zhiwei Liu ◽  
Zhiqiang Zhu ◽  
Zhenyu Qian

The pathogenesis of Parkinson’s disease (PD) is closely associated with the aggregation of α-synuclein (αS) protein. Finding the effective inhibitors of αS aggregation has been considered as the primary therapeutic strategy for PD. Recent studies reported that two neurotransmitters, dopamine (DA) and norepinephrine (NE), can effectively inhibit αS aggregation and disrupt the preformed αS fibrils. However, the atomistic details of αS-DA/NE interaction remain unclear. Here, using molecular dynamics simulations, we investigated the binding behavior of DA/NE molecules and their structural influence on αS44–96 (Greek-key-like core of full length αS) protofibrillar tetramer. Our results showed that DA/NE molecules destabilize αS protofibrillar tetramer by disrupting the β-sheet structure and destroying the intra- and inter-peptide E46–K80 salt bridges, and they can also destroy the inter-chain backbone hydrogen bonds. Three binding sites were identified for both DA and NE molecules interacting with αS tetramer: T54–T72, Q79–A85, and F94–K96, and NE molecules had a stronger binding capacity to these sites than DA. The binding of DA/NE molecules to αS tetramer is dominantly driven by electrostatic and hydrogen bonding interactions. Through aromatic π-stacking, DA and NE molecules can bind to αS protofibril interactively. Our work reveals the detailed disruptive mechanism of protofibrillar αS oligomer by DA/NE molecules, which is helpful for the development of drug candidates against PD. Given that exercise as a stressor can stimulate DA/NE secretion and elevated levels of DA/NE could delay the progress of PD, this work also enhances our understanding of the biological mechanism by which exercise prevents and alleviates PD.


2009 ◽  
Vol 113 (38) ◽  
pp. 12680-12686 ◽  
Author(s):  
Rongliang Wu ◽  
Manli Deng ◽  
Bin Kong ◽  
Yilin Wang ◽  
Xiaozhen Yang

2011 ◽  
Vol 115 (23) ◽  
pp. 5873-5880 ◽  
Author(s):  
Abigail E. Miller ◽  
Poul B. Petersen ◽  
Christopher W. Hollars ◽  
Richard J. Saykally ◽  
Jan Heyda ◽  
...  

Peptides ◽  
2010 ◽  
Vol 31 (11) ◽  
pp. 2100-2108 ◽  
Author(s):  
Neil J. Bruce ◽  
Deliang Chen ◽  
Shubhra G. Dastidar ◽  
Gabriel E. Marks ◽  
Catherine H. Schein ◽  
...  

2014 ◽  
Vol 16 (46) ◽  
pp. 25573-25582 ◽  
Author(s):  
Mirza Galib ◽  
Gabriel Hanna

Ab initio molecular dynamics simulations of carbonic acid (H2CO3) at the air–water interface yield a lower dissociation barrier than in bulk water.


Sign in / Sign up

Export Citation Format

Share Document