Identification of inhibitors of Bcl-2 family protein-protein interaction by combining the BRET screening platform with virtual screening

2020 ◽  
Vol 527 (3) ◽  
pp. 709-715 ◽  
Author(s):  
I-Seul Park ◽  
Haeng Ran Seo ◽  
Kideok Kim ◽  
Honggun Lee ◽  
David Shum ◽  
...  
2020 ◽  
Author(s):  
Christoph Gorgulla ◽  
Krishna PadmanabhaDas ◽  
Kendra E. Leigh ◽  
Marco Cespugli ◽  
Patrick D. Fischer ◽  
...  

<p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed <i>in silico</i> screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 <i>in silico</i> hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.</p>


2021 ◽  
Vol 23 (1) ◽  
pp. 393
Author(s):  
Sebastjan Kralj ◽  
Marko Jukič ◽  
Urban Bren

Since December 2019, the new SARS-CoV-2-related COVID-19 disease has caused a global pandemic and shut down the public life worldwide. Several proteins have emerged as potential therapeutic targets for drug development, and we sought out to review the commercially available and marketed SARS-CoV-2-targeted libraries ready for high-throughput virtual screening (HTVS). We evaluated the SARS-CoV-2-targeted, protease-inhibitor-focused and protein–protein-interaction-inhibitor-focused libraries to gain a better understanding of how these libraries were designed. The most common were ligand- and structure-based approaches, along with various filtering steps, using molecular descriptors. Often, these methods were combined to obtain the final library. We recognized the abundance of targeted libraries offered and complimented by the inclusion of analytical data; however, serious concerns had to be raised. Namely, vendors lack the information on the library design and the references to the primary literature. Few references to active compounds were also provided when using the ligand-based design and usually only protein classes or a general panel of targets were listed, along with a general reference to the methods, such as molecular docking for the structure-based design. No receptor data, docking protocols or even references to the applied molecular docking software (or other HTVS software), and no pharmacophore or filter design details were given. No detailed functional group or chemical space analyses were reported, and no specific orientation of the libraries toward the design of covalent or noncovalent inhibitors could be observed. All libraries contained pan-assay interference compounds (PAINS), rapid elimination of swill compounds (REOS) and aggregators, as well as focused on the drug-like model, with the majority of compounds possessing their molecular mass around 500 g/mol. These facts do not bode well for the use of the reviewed libraries in drug design and lend themselves to commercial drug companies to focus on and improve.


2019 ◽  
Author(s):  
Hester Beard ◽  
Rachel George ◽  
Andrew Wilson ◽  
Robin Bon

Ligand-directed protein labelling can be used to introduce diverse chemical functionalities onto proteins without the need for incorporation of genetically encoded tags. Here we report a method for the rapid and efficient labelling of a protein using a ruthenium-bipyridyl (Ru(II)(bpy)3) modified peptide designed to mimic an interacting BH3 ligand within a BCL-2 family protein-protein interaction (PPI). Using sub-stoichiometric quantities of (Ru(II)(bpy)3)-modified NOXA-B and irradiation with visible light for 1 minute, the anti-apoptotic protein MCL-1 was photolabelled in a ligand-dependent manner with a variety of functional tags, as determined by in-gel fluorescence, affinity purification, and ESIMS analysis. In contrast with previous reports on Ru(II)(bpy)3-catalysed photolabelling, tandem MS experiments revealed that the dominant labelling occurred on a cysteine residue of MCL-1. Labelling of MCL-1 occurred selectively in mixtures with other proteins, including the structurally related BCL-2 member, BCL-xL. These results improve methodology for proximity-induced photolabelling of proteins, demonstrate the approach is applicable to interfaces that mediate PPIs, and pave the way towards future use of ligand-directed proximity labelling for dynamic analysis of the localisation and interactome of BCL-2 family proteins.<br>


2019 ◽  
Author(s):  
Hester Beard ◽  
Rachel George ◽  
Andrew Wilson ◽  
Robin Bon

Ligand-directed protein labelling can be used to introduce diverse chemical functionalities onto proteins without the need for incorporation of genetically encoded tags. Here we report a method for the rapid and efficient labelling of a protein using a ruthenium-bipyridyl (Ru(II)(bpy)3) modified peptide designed to mimic an interacting BH3 ligand within a BCL-2 family protein-protein interaction (PPI). Using sub-stoichiometric quantities of (Ru(II)(bpy)3)-modified NOXA-B and irradiation with visible light for 1 minute, the anti-apoptotic protein MCL-1 was photolabelled in a ligand-dependent manner with a variety of functional tags, as determined by in-gel fluorescence, affinity purification, and ESIMS analysis. In contrast with previous reports on Ru(II)(bpy)3-catalysed photolabelling, tandem MS experiments revealed that the dominant labelling occurred on a cysteine residue of MCL-1. Labelling of MCL-1 occurred selectively in mixtures with other proteins, including the structurally related BCL-2 member, BCL-xL. These results improve methodology for proximity-induced photolabelling of proteins, demonstrate the approach is applicable to interfaces that mediate PPIs, and pave the way towards future use of ligand-directed proximity labelling for dynamic analysis of the localisation and interactome of BCL-2 family proteins.<br>


Sign in / Sign up

Export Citation Format

Share Document