Trypanothione reductase (TR), a flavoprotein oxidoreductase is an important therapeutic target for leishmaniasis. Ligand-based pharmacophore modelling and molecular docking were used to predict selective inhibitors against TR. Homology modelling was employed to generate a three-dimensional structure of Leishmania major trypanothione reductase (LmTR). A pharmacophore model used to screen a natural compound library generated 42 hits, which were docked against the LmTR protein. Compounds with lower binding energies were evaluated via in silico pharmacological profiling and bioactivity. Four compounds emerged as potential leads comprising Karatavicinol (7-[(2E,6E,10S)-10,11-dihydroxy-3,7,11-trimethyldodeca-2,6-dienoxy]chromen-2-one), Marmin (7-[(E,6R)-6,7-dihydroxy-3,7-dimethyloct-2-enoxy]chromen-2-one), Colladonin (7-[[(4aS)-6-hydroxy-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]methoxy]chromen-2-one), and Pectachol (7-[(6-hydroxy-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl)methoxy]-6,8-dimethoxychromen-2-one) with good binding energies of −9.4, −9.3, 8.8, and −8.5 kcal/mol, respectively. These compounds bound effectively to the FAD domain of the protein with some critical residues including Asp35, Thr51, Lys61, Tyr198, and Asp327. Furthermore, molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) computations corroborated their strong binding. The compounds were also predicted to possess anti-leishmanial activity. The molecules serves as templates for the design of potential drug candidates and can be evaluated in vitro with optimistic results in producing plausible attenuating infectivity in macrophages.