Lansoprazole reduces renal cyst in polycystic kidney disease via inhibition of cell proliferation and fluid secretion

2018 ◽  
Vol 154 ◽  
pp. 175-182 ◽  
Author(s):  
Jiriporn Nantavishit ◽  
Varanuj Chatsudthipong ◽  
Sunhapas Soodvilai
2001 ◽  
Vol 12 (4) ◽  
pp. 719-725
Author(s):  
KOICHI NAKANISHI ◽  
WILLIAM E. SWEENEY ◽  
KATHERINE MACRAE DELL ◽  
CALVIN U. COTTON ◽  
ELLIS D. AVNER

Abstract. An extensive body of in vitro data implicates epithelial chloride secretion, mediated through cystic fibrosis transmembrane conductance regulator (CFTR) protein, in generating or maintaining fluid filled cysts in MDCK cells and in human autosomal dominant polycystic kidney disease (ADPKD). In contrast, few studies have addressed the pathophysiology of fluid secretion in cyst formation and enlargement in autosomal recessive polycystic kidney disease (ARPKD). Murine models of targeted disruptions or deletions of specific genes have created opportunities to examine the role of individual gene products in normal development and/or disease pathophysiology. The creation of a murine model of CF, which lacks functional CFTR protein, provides the opportunity to determine whether CFTR activity is required for renal cyst formation in vivo. Therefore, this study sought to determine whether renal cyst formation could be prevented by genetic complementation of the BPK murine model of ARPKD with the CFTR knockout mouse. The results of this study reveal that in animals that are homozygous for the cystic gene (bpk), the lack of functional CFTR protein on the apical surface of cystic epithelium does not provide protection against cyst growth and subsequent decline in renal function. Double mutant mice (bpk -/-; cftr -/-) developed massively enlarged kidneys and died, on average, 7 d earlier than cystic, non-CF mice (bpk -/-; cftr +/±). This suggests fundamental differences in the mechanisms of transtubular fluid secretion in animal models of ARPKD compared with ADPKD.


2014 ◽  
Vol 88 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Chaowalit Yuajit ◽  
Chatchai Muanprasat ◽  
Anna-Rachel Gallagher ◽  
Sorin V. Fedeles ◽  
Suticha Kittayaruksakul ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 6019
Author(s):  
Khaoula Talbi ◽  
Inês Cabrita ◽  
Rainer Schreiber ◽  
Karl Kunzelmann

Autosomal dominant polycystic kidney disease (ADPKD) is caused by loss of function of PKD1 (polycystin 1) or PKD2 (polycystin 2). The Ca2+-activated Cl− channel TMEM16A has a central role in ADPKD. Expression and function of TMEM16A is upregulated in ADPKD which causes enhanced intracellular Ca2+ signaling, cell proliferation, and ion secretion. We analyzed kidneys from Pkd1 knockout mice and found a more pronounced phenotype in males compared to females, despite similar levels of expression for renal tubular TMEM16A. Cell proliferation, which is known to be enhanced with loss of Pkd1−/−, was larger in male when compared to female Pkd1−/− cells. This was paralleled by higher basal intracellular Ca2+ concentrations in primary renal epithelial cells isolated from Pkd1−/− males. The results suggest enhanced intracellular Ca2+ levels contributing to augmented cell proliferation and cyst development in male kidneys. Enhanced resting Ca2+ also caused larger basal chloride currents in male primary cells, as detected in patch clamp recordings. Incubation of mouse primary cells, mCCDcl1 collecting duct cells or M1 collecting duct cells with dihydrotestosterone (DHT) enhanced basal Ca2+ levels and increased basal and ATP-stimulated TMEM16A chloride currents. Taken together, the more severe cystic phenotype in males is likely to be caused by enhanced cell proliferation, possibly due to enhanced basal and ATP-induced intracellular Ca2+ levels, leading to enhanced TMEM16A currents. Augmented Ca2+ signaling is possibly due to enhanced expression of Ca2+ transporting/regulating proteins.


2011 ◽  
Vol 108 (44) ◽  
pp. 18067-18072 ◽  
Author(s):  
E. E. Olsan ◽  
S. Mukherjee ◽  
B. Wulkersdorfer ◽  
J. M. Shillingford ◽  
A. J. Giovannone ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 42 ◽  
Author(s):  
Li-Fang Chou ◽  
Ya-Lien Cheng ◽  
Chun-Yih Hsieh ◽  
Chan-Yu Lin ◽  
Huang-Yu Yang ◽  
...  

Autophagy impairment has been demonstrated in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) and could be a new target of treatment. Trehalose is a natural, nonreducing disaccharide that has been shown to enhance autophagy. Therefore, we investigated whether trehalose treatment reduces renal cyst formation in a Pkd1-hypomorphic mouse model. Pkd1 miRNA transgenic (Pkd1 miR Tg) mice and wild-type littermates were given drinking water supplemented with 2% trehalose from postnatal day 35 to postnatal day 91. The control groups received pure water or 2% sucrose for the control of hyperosmolarity. The effect on kidney weights, cystic indices, renal function, cell proliferation, and autophagic activities was determined. We found that Pkd1 miR Tg mice had a significantly lower renal mRNA expression of autophagy-related genes, including atg5, atg12, ulk1, beclin1, and p62, compared with wild-type control mice. Furthermore, immunohistochemical analysis showed that cystic lining cells had strong positive staining for the p62 protein, indicating impaired degradation of the protein by the autophagy-lysosome pathway. However, trehalose treatment did not improve reduced autophagy activities, nor did it reduce relative kidney weights, plasma blood urea nitrogen levels, or cystatin C levels in Pkd1 miR Tg mice. Histomorphological analysis revealed no significant differences in the renal cyst index, fibrosis score, or proliferative score among trehalose-, sucrose-, and water-treated groups. Our results demonstrate that adding trehalose to drinking water does not modulate autophagy activities and renal cystogenesis in Pkd1-deficient mice, suggesting that an oral supplement of trehalose may not affect the progression of ADPKD.


Sign in / Sign up

Export Citation Format

Share Document