Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria

2017 ◽  
Vol 112 ◽  
pp. 49-54 ◽  
Author(s):  
Jingjuan Mu ◽  
Xianping Li ◽  
Jiaguo Jiao ◽  
Guanning Ji ◽  
Jun Wu ◽  
...  
2018 ◽  
Author(s):  
Ryan Ordung ◽  
◽  
Gary A. Robbins ◽  
Kendra Maas ◽  
Mark Higgins

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boregowda Nandini ◽  
Hariprasad Puttaswamy ◽  
Ramesh Kumar Saini ◽  
Harischandra Sripathy Prakash ◽  
Nagaraja Geetha

AbstractThe present work is aimed to examine the genetic variability and the distribution pattern of beneficial Trichoderma spp. isolated from rhizosphere samples and their mode of action in improving the plant health. A total of 131 suspected fungi were isolated from the rhizospheric soil and 91 isolates were confirmed as Trichoderma spp. T. asperellum and T. harzianum were found high in the frequency of occurrence. Genetic diversity analysis using RAPD and ISSR revealed the diverse distribution pattern of Trichoderma spp. indicating their capability to adapt to broad agroclimatic conditions. Analysis of genetic diversity using molecular markers revealed intra-species diversity of isolated Trichoderma spp. The frequency of pearl millet (PM) root colonization by Trichoderma spp. was found to be 100%. However, they showed varied results for indole acetic acid, siderophore, phosphate solubilization, β-1,3-glucanase, chitinase, cellulase, lipase, and protease activity. Downy mildew disease protection studies revealed a strong involvement of Trichoderma spp. in direct suppression of the pathogen (mean 37.41) in the rhizosphere followed by inducing systemic resistance. Our findings highlights the probable distribution and diversity profile of Trichoderma spp. as well as narrate the possible utilization of Trichoderma spp. as microbial fungicides in PM cultivation across different agroclimatic zones of India.


2021 ◽  
Vol 161 ◽  
pp. 105249
Author(s):  
Muhammad Wahab Yasir ◽  
Staci L. Capozzi ◽  
Birthe Veno Kjellerup ◽  
Shahid Mahmood ◽  
Tariq Mahmood ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 295
Author(s):  
Bong-Ju Kim ◽  
Yong-Kwon Koh ◽  
Jang-Soon Kwon

The microbially mediated recovery of valuable metals contained in mining waste presents an economical alternative to conventional hydrometallurgical processes. In order to investigate the effect of bacterial adaptation and biological oxidation on bioleaching, the microbially mediated bioleaching of a pyrrhotite sample from mine waste, with indigenous bacteria existing in acid mine drainage, was studied. The indigenous bacteria were sub-cultured repeatedly for iron adaptation, and Acidithiobacillus ferrooxidans was identified as the dominant member of the microbial consortium. The point of zero charge (PZC) of pyrrhotite sampled from mine waste was determined as 3.0. The performance of bioleaching by contact and non-contact biological oxidation was compared by conducting bioleaching under different initial pH (pHini) conditions (2.8 and 3.2). Negatively charged bacteria could be attached onto the pyrrhotite, which has a positive surface charge at lower pHini (2.8) than the PZC (3.0). Bacteria attachment and corrosion pits on the surface of the pyrrhotite residues were observed at pHini of 2.8. Under bacteria-adapted conditions, the leaching concentration of Fe (44.2 mg/L) at pHini of 2.8 was 2.1 times greater than that (21.3 mg/L) at pHini of 3.2. Under non-adapted bacteria conditions, the extent of Fe leaching was not significantly different between the pHini of 2.8 and 3.2. This could be attributed to the fact that the adapted bacteria could more easily attach onto the pyrrhotite surfaces at pHini 2.8, allowing contact biological oxidation during the bioleaching experiments. We demonstrate here that the bioleaching of pyrrhotite could increase Fe recovery through bacterial adaptation and contact biological oxidation.


2021 ◽  
Vol 782 (4) ◽  
pp. 042010
Author(s):  
A F Dewinta ◽  
Y A Wahyudi ◽  
R Y Pratama ◽  
I E Susetya ◽  
R F Siregar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document