Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking

Biomaterials ◽  
2012 ◽  
Vol 33 (18) ◽  
pp. 4515-4525 ◽  
Author(s):  
Kristin Andreas ◽  
Radostina Georgieva ◽  
Mechthild Ladwig ◽  
Susanne Mueller ◽  
Michael Notter ◽  
...  
Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 484
Author(s):  
Yue Gao ◽  
Anna Jablonska ◽  
Chengyan Chu ◽  
Piotr Walczak ◽  
Miroslaw Janowski

Rapidly ageing populations are beset by tissue wear and damage. Stem cell-based regenerative medicine is considered a solution. Years of research point to two important aspects: (1) the use of cellular imaging to achieve sufficient precision of therapeutic intervention, and the fact that (2) many therapeutic actions are executed through extracellular vesicles (EV), released by stem cells. Therefore, there is an urgent need to interrogate cellular labels in the context of EV release. We studied clinically applicable cellular labels: superparamagnetic iron oxide nanoparticles (SPION), and radionuclide detectable by two main imaging modalities: MRI and PET. We have demonstrated effective stem cell labeling using both labels. Then, we obtained EVs from cell cultures and tested for the presence of cellular labels. We did not find either magnetic or radioactive labels in EVs. Therefore, we report that stem cells do not lose labels in released EVs, which indicates the reliability of stem cell magnetic and radioactive labeling, and that there is no interference of labels with EV content. In conclusion, we observed that direct cellular labeling seems to be an attractive approach to monitoring stem cell delivery, and that, importantly, labels neither locate in EVs nor affect their basic properties.


Polymer ◽  
2016 ◽  
Vol 106 ◽  
pp. 238-248 ◽  
Author(s):  
Duc Nguyen ◽  
Binh T.T. Pham ◽  
Vien Huynh ◽  
Byung J. Kim ◽  
Nguyen T.H. Pham ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Michelle R. Santoso ◽  
Phillip C. Yang

Stem cell therapy has broad applications in regenerative medicine and increasingly within cardiovascular disease. Stem cells have emerged as a leading therapeutic option for many diseases and have broad applications in regenerative medicine. Injuries to the heart are often permanent due to the limited proliferation and self-healing capability of cardiomyocytes; as such, stem cell therapy has become increasingly important in the treatment of cardiovascular diseases. Despite extensive efforts to optimize cardiac stem cell therapy, challenges remain in the delivery and monitoring of cells injected into the myocardium. Other fields have successively used nanoscience and nanotechnology for a multitude of biomedical applications, including drug delivery, targeted imaging, hyperthermia, and tissue repair. In particular, superparamagnetic iron oxide nanoparticles (SPIONs) have been widely employed for molecular and cellular imaging. In this mini-review, we focus on the application of superparamagnetic iron oxide nanoparticles in targeting and monitoring of stem cells for the treatment of myocardial infarctions.


Author(s):  
Brandon J. Tefft ◽  
Susheil Uthamaraj ◽  
J. Jonathan Harburn ◽  
Martin Klabusay ◽  
Dan Dragomir-Daescu ◽  
...  

2012 ◽  
Vol 10 (2) ◽  
pp. 180-188 ◽  
Author(s):  
Tatiana Taís Sibov ◽  
Liza Aya Mabuchi Miyaki ◽  
Javier Bustamante Mamani ◽  
Luciana Cavalheiro Marti ◽  
Luiz Roberto Sardinha ◽  
...  

OBJECTIVE: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. METHODS: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37°C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxy-fluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. RESULTS: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine continue to proliferate over seven days and the percentage of cells in early or late apoptosis is low compared to the percentage of live cells over the three days. CONCLUSION: Our results showed that the use of poly-L-lysine complexed with superparamagnetic iron oxide nanoparticles/dextran provides better internalization of these superparamagnetic iron oxide nanoparticles in mesenchymal stem cells Thus, we demonstrated that this type of labeling is not cytotoxic to the mesenchymal stem cells, since the viability and apoptosis assays showed that the cells remain alive and proliferating. The efficiency of this type of labeling in mesenchymal stem cells can provide non-invasive methods for monitoring these cells in vivo.


2012 ◽  
Vol 21 (6) ◽  
pp. 1137-1148 ◽  
Author(s):  
Anat Yanai ◽  
Urs O. Häfeli ◽  
Andrew L. Metcalfe ◽  
Peter Soema ◽  
Lois Addo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document