scholarly journals Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking

Theranostics ◽  
2013 ◽  
Vol 3 (8) ◽  
pp. 595-615 ◽  
Author(s):  
Li Li ◽  
Wen Jiang ◽  
Kui Luo ◽  
Hongmei Song ◽  
Fang Lan ◽  
...  
Nanoscale ◽  
2014 ◽  
Vol 6 (16) ◽  
pp. 9646-9654 ◽  
Author(s):  
Daniel Nordmeyer ◽  
Patrick Stumpf ◽  
Dominic Gröger ◽  
Andreas Hofmann ◽  
Sven Enders ◽  
...  

Superparamagnetic iron oxide nanoparticles with a dendritic polyglycerol (dPG) sulfate strongly bind to L- and P-selectin. Shielding of leukocytes reduces cell extravasation and binding to endothelial cells indicate inflammation specificity and thus, applicability as selective MRI contrast agent.


2017 ◽  
Vol 114 (9) ◽  
pp. 2325-2330 ◽  
Author(s):  
He Wei ◽  
Oliver T. Bruns ◽  
Michael G. Kaul ◽  
Eric C. Hansen ◽  
Mariya Barch ◽  
...  

Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.


2011 ◽  
Vol 21 (39) ◽  
pp. 15157 ◽  
Author(s):  
Selim Sulek ◽  
Busra Mammadov ◽  
Davut I. Mahcicek ◽  
Huseyin Sozeri ◽  
Ergin Atalar ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 484
Author(s):  
Yue Gao ◽  
Anna Jablonska ◽  
Chengyan Chu ◽  
Piotr Walczak ◽  
Miroslaw Janowski

Rapidly ageing populations are beset by tissue wear and damage. Stem cell-based regenerative medicine is considered a solution. Years of research point to two important aspects: (1) the use of cellular imaging to achieve sufficient precision of therapeutic intervention, and the fact that (2) many therapeutic actions are executed through extracellular vesicles (EV), released by stem cells. Therefore, there is an urgent need to interrogate cellular labels in the context of EV release. We studied clinically applicable cellular labels: superparamagnetic iron oxide nanoparticles (SPION), and radionuclide detectable by two main imaging modalities: MRI and PET. We have demonstrated effective stem cell labeling using both labels. Then, we obtained EVs from cell cultures and tested for the presence of cellular labels. We did not find either magnetic or radioactive labels in EVs. Therefore, we report that stem cells do not lose labels in released EVs, which indicates the reliability of stem cell magnetic and radioactive labeling, and that there is no interference of labels with EV content. In conclusion, we observed that direct cellular labeling seems to be an attractive approach to monitoring stem cell delivery, and that, importantly, labels neither locate in EVs nor affect their basic properties.


Sign in / Sign up

Export Citation Format

Share Document