Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates

Biomaterials ◽  
2014 ◽  
Vol 35 (21) ◽  
pp. 5472-5481 ◽  
Author(s):  
Elizabeth A. Zimmermann ◽  
Bernd Gludovatz ◽  
Eric Schaible ◽  
Björn Busse ◽  
Robert O. Ritchie
2011 ◽  
Vol 108 (35) ◽  
pp. 14416-14421 ◽  
Author(s):  
E. A. Zimmermann ◽  
E. Schaible ◽  
H. Bale ◽  
H. D. Barth ◽  
S. Y. Tang ◽  
...  

Biomaterials ◽  
2006 ◽  
Vol 27 (9) ◽  
pp. 2095-2113 ◽  
Author(s):  
Q.D. Yang ◽  
Brian N. Cox ◽  
Ravi K. Nalla ◽  
R.O. Ritchie

Author(s):  
Rémy Gauthier ◽  
Hélène Follet ◽  
Max Langer ◽  
Françoise Peyrin ◽  
David Mitton

Cortical bone fracture mechanisms are well studied under quasi-static loading. The influence of strain rate on crack propagation mechanisms needs to be better understood, however. We have previously shown that several aspects of the bone micro-structure are involved in crack propagation, such as the complete porosity network, including the Haversian system and the lacunar network, as well as biochemical aspects, such as the maturity of collagen cross-links. The aim of this study is to investigate the influence of strain rate on the toughness of human cortical bone with respect to its microstructure and organic non-collagenous composition. Two strain rates will be considered: quasi-static loading (10−4 s−1), a standard condition, and a higher loading rate (10−1 s−1), representative of a fall. Cortical bone samples were extracted from eight female donors (age 50–91 years). Three-point bending tests were performed until failure. Synchrotron radiation micro-computed tomography imaging was performed to assess bone microstructure including the Haversian system and the lacunar system. Collagen enzymatic cross-link maturation was measured using a high performance liquid chromatography column. Results showed that that under quasi-static loading, the elastic contribution of the fracture process is correlated to both the collagen cross-links maturation and the microstructure, while the plastic contribution is correlated only to the porosity network. Under fall-like loading, bone organization appears to be less linked to crack propagation.


2016 ◽  
Vol 26 (16) ◽  
pp. 2609-2616 ◽  
Author(s):  
Pim van der Asdonk ◽  
Hans C. Hendrikse ◽  
Marcos Fernandez-Castano Romera ◽  
Dion Voerman ◽  
Britta E. I. Ramakers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document