scholarly journals Switching between self-renewal and lineage commitment of human induced pluripotent stem cells via cell–substrate and cell–cell interactions on a dendrimer-immobilized surface

Biomaterials ◽  
2014 ◽  
Vol 35 (22) ◽  
pp. 5670-5678 ◽  
Author(s):  
Mee-Hae Kim ◽  
Masahiro Kino-oka
PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30234 ◽  
Author(s):  
Luca Orlando ◽  
Yolanda Sanchez-Ripoll ◽  
James Foster ◽  
Heather Bone ◽  
Claudia Giachino ◽  
...  

2019 ◽  
Vol 235 (3) ◽  
pp. 2753-2760 ◽  
Author(s):  
Zhenbo Han ◽  
Ying Yu ◽  
Benzhi Cai ◽  
Zihang Xu ◽  
Zhengyi Bao ◽  
...  

2013 ◽  
Vol 33 (22) ◽  
pp. 4434-4447 ◽  
Author(s):  
Takashi Yugawa ◽  
Koichiro Nishino ◽  
Shin-ichi Ohno ◽  
Tomomi Nakahara ◽  
Masatoshi Fujita ◽  
...  

NOTCH plays essential roles in cell fate specification during embryonic development and in adult tissue maintenance. In keratinocytes, it is a key inducer of differentiation. ROCK, an effector of the small GTPase Rho, is also implicated in keratinocyte differentiation, and its inhibition efficiently potentiates immortalization of human keratinocytes and greatly improves survival of dissociated human pluripotent stem cells. However, the molecular basis for ROCK activation is not fully established in these contexts. Here we provide evidence that intracellular forms of NOTCH1 trigger the immediate activation of ROCK1 independent of its transcriptional activity, promoting differentiation and resulting in decreased clonogenicity of normal human keratinocytes. Knockdown of NOTCH1 abrogated ROCK1 activation and conferred sustained clonogenicity upon differentiation stimuli. Treatment with a ROCK inhibitor, Y-27632, or ROCK1 silencing substantially rescued the growth defect induced by activated NOTCH1. Furthermore, we revealed that impaired self-renewal of human induced pluripotent stem cells upon dissociation is, at least in part, attributable to NOTCH-dependent ROCK activation. Thus, the present study unveils a novel NOTCH-ROCK pathway critical for cellular differentiation and loss of self-renewal capacity in a subset of immature cells.


2013 ◽  
Vol 25 (1) ◽  
pp. 301
Author(s):  
A. R. Fan ◽  
K. Y. Ma ◽  
T. C. Zhao ◽  
P. P. An ◽  
B. Tang ◽  
...  

It was recently found that the ten-eleven-translocation (TET) family of Fe(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and thus promotes active demethylation of genomes. Tet1 is highly expressed in mouse embryonic stem cells (mESC) and has been demonstrated to involve in mESC maintenance. Here we used small interference RNA (siRNA) to transiently knockdown expression of Tet1 in porcine induced pluripotent stem cells (iPSC) in order to identify its functions. The fetal fibroblasts were isolated from a 30-day-old porcine fetus and induced into iPSC with defined transcription factors, namely Oct-4, Sox-2, Klf-4, and C-myc. The colonies appeared on Day 12 and were picked up on Day 14. These colonies had normal ES-like morphology and alkaline phosphatase activity. Specifically, they were positively stained for pluripotency-specific markers, including Oct4, Sox2, Nanog, Rex1, and SSEA1. When cultured in vitro, the cells formed embryoid bodies (EB), and all 3 germ layer markers (endoderm: AFP, alphaAT; mesoderm: BMP4, Enolase; ectoderm: GFAP, Neurod) were detected positively in EB. For siRNA transfections, iPSC from the colonies were transfected with 40 pmol of siRNA and 2 µL of Lipofectamine 2000 in 1 well of a 24-well plate. After transfection, iPSC were subjected to fluorescence-activated cell sorting to determine the fraction of FAM-positive cells in order to confirm transfection efficiency; the percentage of positive cells reached 48 ± 4.96. We observed obvious knockdown of Tet1 after short-term transfection of siRNA, and the knockdown efficiency was confirmed using qRT-PCR and immunofluorescence staining. Notably, knockdown of Tet1 resulted in morphological abnormality and loss of undifferentiated state of porcine iPSC. However, no obvious morphological changes were observed in the negative control (transfected with nonsense-siRNA), positive control (transfected with GAPDH-siRNA), or mock control (transfected with DEPC-treated water). To gain insight into the molecular mechanism underlying the self-renewal defect, we analysed the effects of Tet1 knockdown on the expression of key stem cell factors and differentiation markers of different embryonic layers using qRT-PCR. We found that knockdown of Tet1 resulted in downregulated expression of pluripotency-related genes, such as Lefty-2, Klf-2, and Sox-2 (the expression ratios of post-transfection to pre-transfection were 0.31 ± 0.21, 0.48 ± 0.072, and 0.65 ± 0.046, respectively), and upregulated expression of differentiation-related genes, including Pitx-2, Hand-1, Gata-6, and Lef-1 (the expression ratios of post-transfection to pre-transfection were 4.35 ± 1.36, 2.56 ± 0.68, 2.91 ± 1.47, and 2.33 ± 1.11, respectively). However, Oct-4, C-myc, Klf-4, and Nanog were not downregulated (the expression ratios of post-transfection to pre-transfection were 0.91 ± 0.15, 1.12 ± 0.26, 1.15 ± 0.21, and 1.08 ± 0.08, respectively). Taken together, Tet1 plays important roles in porcine iPSC self-renewal and characterization maintenance. This study was financed by National Basic Research Program of China (NO.2009CB941001).


Author(s):  
Warunya Chakritbudsabong ◽  
Somjit Chaiwattanarungruengpaisan ◽  
Ladawan Sariya ◽  
Sirikron Pamonsupornvichit ◽  
Joao N. Ferreira ◽  
...  

Porcine species have been used in preclinical transplantation models for assessing the efficiency and safety of transplants before their application in human trials. Porcine-induced pluripotent stem cells (piPSCs) are traditionally established using four transcription factors (4TF): OCT4, SOX2, KLF4, and C-MYC. However, the inefficiencies in the reprogramming of piPSCs and the maintenance of their self-renewal and pluripotency remain challenges to be resolved. LIN28 was demonstrated to play a vital role in the induction of pluripotency in humans. To investigate whether this factor is similarly required by piPSCs, the effects of adding LIN28 to the 4TF induction method (5F approach) on the efficiency of piPSC reprogramming and maintenance of self-renewal and pluripotency were examined. Using a retroviral vector, porcine fetal fibroblasts were transfected with human OCT4, SOX2, KLF4, and C-MYC with or without LIN28. The colony morphology and chromosomal stability of these piPSC lines were examined and their pluripotency properties were characterized by investigating both their expression of pluripotency-associated genes and proteins and in vitro and in vivo differentiation capabilities. Alkaline phosphatase assay revealed the reprogramming efficiencies to be 0.33 and 0.17% for the 4TF and 5TF approaches, respectively, but the maintenance of self-renewal and pluripotency until passage 40 was 6.67 and 100%, respectively. Most of the 4TF-piPSC colonies were flat in shape, showed weak positivity for alkaline phosphatase, and expressed a significantly high level of SSEA-4 protein, except for one cell line (VSMUi001-A) whose properties were similar to those of the 5TF-piPSCs; that is, tightly packed and dome-like in shape, markedly positive for alkaline phosphatase, and expressing endogenous pluripotency genes (pOCT4, pSOX2, pNANOG, and pLIN28), significantly high levels of pluripotent proteins (OCT4, SOX2, NANOG, LIN28, and SSEA-1), and a significantly low level of SSEA-4 protein. VSMUi001-A and all 5F-piPSC lines formed embryoid bodies, underwent spontaneous cardiogenic differentiation with cardiac beating, expressed cardiomyocyte markers, and developed teratomas. In conclusion, in addition to the 4TF, LIN28 is required for the effective induction of piPSCs and the maintenance of their long-term self-renewal and pluripotency toward the development of all germ layers. These piPSCs have the potential applicability for veterinary science.


HemaSphere ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. e319 ◽  
Author(s):  
Salvatore Nicola Bertuccio ◽  
Fabien Boudia ◽  
Marie Cambot ◽  
Cécile K. Lopez ◽  
Larissa Lordier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document