Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels

Biomaterials ◽  
2016 ◽  
Vol 101 ◽  
pp. 199-206 ◽  
Author(s):  
Nicole J. Darling ◽  
Yiu-Sun Hung ◽  
Shruti Sharma ◽  
Tatiana Segura
Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 206
Author(s):  
Yu Guo ◽  
Jie Gu ◽  
Yuxin Jiang ◽  
Yanyan Zhou ◽  
Zhenshu Zhu ◽  
...  

Poly(ethylene glycol) (PEG)-based synthetic hydrogels based on Michael-type addition reaction have been widely used for cell culture and tissue engineering. However, recent studies showed that these types of hydrogels were not homogenous as expected since micro domains generated due to the fast reaction kinetics. Here, we demonstrated a new kind of method to prepare homogenous poly(ethylene glycol) hydrogels based on Michael-type addition using the side chain amine-contained short peptides. By introducing such a kind of short peptides, the homogeneity of crosslinking and mechanical property of the hydrogels has been also significantly enhanced. The compressive mechanical and recovery properties of the homogeneous hydrogels prepared in the presence of side chain amine-contained short peptides were more reliable than those of inhomogeneous hydrogels while the excellent biocompatibility remained unchanged. Furthermore, the reaction rate and gelation kinetics of maleimide- and thiol-terminated PEG were proved to be significantly slowed down in the presence of the side chain amine-contained short peptides, thus leading to the improved homogeneity of the hydrogels. We anticipate that this new method can be widely applied to hydrogel preparation and modification based on Michael-type addition gelation.


Soft Matter ◽  
2016 ◽  
Vol 12 (7) ◽  
pp. 2076-2085 ◽  
Author(s):  
Jiwon Kim ◽  
Yen P. Kong ◽  
Steven M. Niedzielski ◽  
Rahul K. Singh ◽  
Andrew J. Putnam ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1156
Author(s):  
Dejia Chen ◽  
Lisha Lei ◽  
Meishuai Zou ◽  
Xiaodong Li

The non-isothermal crystallization kinetics of double-crystallizable poly(ethylene glycol)–poly(l-lactide) diblock copolymer (PEG-PLLA) and poly(ethylene glycol) homopolymer (PEG) were studied using the fast cooling rate provided by a Fast-Scan Chip-Calorimeter (FSC). The experimental data were analyzed by the Ozawa method and the Kissinger equation. Additionally, the total crystallization rate was represented by crystallization half time t1/2. The Ozawa method is a perfect success because secondary crystallization is inhibited by using fast cooling rate. The first crystallized PLLA block provides nucleation sites for the crystallization of PEG block and thus promotes the crystallization of the PEG block, which can be regarded as heterogeneous nucleation to a certain extent, while the method of the PEG block and PLLA block crystallized together corresponds to a one-dimensional growth, which reflects that there is a certain separation between the crystallization regions of the PLLA block and PEG block. Although crystallization of the PLLA block provides heterogeneous nucleation conditions for PEG block to a certain extent, it does not shorten the time of the whole crystallization process because of the complexity of the whole crystallization process including nucleation and growth.


Coatings ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 99 ◽  
Author(s):  
Ji-Won Park ◽  
Jong-Gyu Lee ◽  
Gyu-Seong Shim ◽  
Hyun-Joong Kim ◽  
Young-Kwan Kim ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3713
Author(s):  
Xiaodong Li ◽  
Meishuai Zou ◽  
Lisha Lei ◽  
Longhao Xi

The non-isothermal crystallization behaviors of poly (ethylene glycol) (PEG) and poly (ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) were investigated through a commercially available chip-calorimeter Flash DSC2+. The non-isothermal crystallization data under different cooling rates were analyzed by the Ozawa model, modified Avrami model, and Mo model. The results of the non-isothermal crystallization showed that the PCL block crystallized first, followed by the crystallization of the PEG block when the cooling rate was 50–100 K/s. However, only the PEG block can crystallize when the cooling rate is 200–600 K/s. The crystallization of PEG-PCL is completely inhibited when the cooling rate is 1000 K/s. The modified Avrami and Ozawa models were found to describe the non-isothermal crystallization processes well. The growth methods of PEG and PEG-PCL are both three-dimensional spherulitic growth. The Mo model shows that the crystallization rate of PEG is greater than that of PEG-PCL.


Sign in / Sign up

Export Citation Format

Share Document