avrami model
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Jingyun Liu ◽  
Ziyu Xing ◽  
Haibao Lu ◽  
Yong-Qing Fu

Sequential glass and melting transitions in semi-crystalline shape memory polymers (SMPs) provide great opportunities to design and generate multiple shape-memory effects (SMEs) for practical applications. However, the complexly dynamic confinements of coexisting amorphous and crystalline phases within the semi-crystalline SMPs are yet fully understood. In this study, an interfacial confinement model is formulated to describe dynamic relaxation and shape memory behavior in the semi-crystalline SMPs undergoing sequential phase/state transitions. A confinement entropy model is first established to describe the glass transition behavior of amorphous phase within the SMPs based on the free volume theory, where the free volume is critically confined by the crystalline phase. An extended Avrami model is then formulated using the frozen volume theory to characterize the melting and crystallization transitions of the crystalline phase in the SMPs, whose interfacial confinement with the amorphous phase has been identified as the driving force for the supercooled regime. Furthermore, an extended Maxwell model is formulated to describe the effect of dynamic confinement of two phases on the multiple SMEs and shape recovery behaviors in the semi-crystalline SMPs. Finally, the effectiveness of the newly proposed model is verified using the experimental data reported in the literature. This study aims to provide a new methodology for the dynamic confinements and cooperative principles in the semi-crystalline SMP towards multiple SMEs.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shoushan Liu ◽  
Dong Li ◽  
Xinyi He ◽  
Hang Li ◽  
Xiaoyan Li ◽  
...  

Abstract The dry fractionation beef tallow and their products were analyzed in the dynamic thermodynamic analysis, isothermal analysis and crystallization kinetics analysis in this experiment. Through the dynamic thermodynamic analysis by DSC, the possibility of fine fractionation of beef tallow at 25 °C and 42.9 °C crystallization temperature was obtained. The dynamic thermodynamic analysis of dry fractionation products was carried out, and the linear functions of peak temperature and melting/crystallization rate of beef tallow and its stearic acid mixture were constructed. The crystallization temperature and melting point were obtained by linear function. The isothermal crystallization kinetic model was used to calculate and fit the experimental data by the Avrami model. Beef tallow and its stearic mixture were fitted with the Avrami equation to obtain R 2 ≥ 0.98. This analysis provides an innovative idea and method for thermodynamics and crystallization kinetics of beef tallow.


2021 ◽  
Vol 7 (4) ◽  
pp. 75
Author(s):  
Oluwakemi Ajala ◽  
Caroline Werther ◽  
Rauf Mahmudzade ◽  
Peyman Nikaeen ◽  
Dilip Depan

Graphene nanoscrolls (GNS) are 1D carbon-based nanoparticles. In this study, they were investigated as a heterogeneous nucleating agent in the poly(lactic acid) (PLA) matrix. The isothermal and non-isothermal melting behavior and crystallization kinetics of PLA-GNS nanocomposites were investigated using a differential scanning calorimeter (DSC). Low GNS content not only accelerated the crystallization rate, but also the degree of crystallinity of PLA. The Avrami model was used to fit raw experimental data, and to evaluate the crystallization kinetics for both isothermal and non-isothermal runs through the nucleation and growth rate. Additionally, the effect of the dimensionality and structure of the nanoparticle on the crystallization behavior and kinetics of PLA is discussed. GNS, having a similar fundamental unit as CNT and GNP, were observed to possess superior mechanical properties when analyzed by the nanoindentation technique. The scrolled architecture of GNS facilitated a better interface and increased energy absorption with PLA compared to CNTs and GNPs, resulting in superior mechanical properties.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3713
Author(s):  
Xiaodong Li ◽  
Meishuai Zou ◽  
Lisha Lei ◽  
Longhao Xi

The non-isothermal crystallization behaviors of poly (ethylene glycol) (PEG) and poly (ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) were investigated through a commercially available chip-calorimeter Flash DSC2+. The non-isothermal crystallization data under different cooling rates were analyzed by the Ozawa model, modified Avrami model, and Mo model. The results of the non-isothermal crystallization showed that the PCL block crystallized first, followed by the crystallization of the PEG block when the cooling rate was 50–100 K/s. However, only the PEG block can crystallize when the cooling rate is 200–600 K/s. The crystallization of PEG-PCL is completely inhibited when the cooling rate is 1000 K/s. The modified Avrami and Ozawa models were found to describe the non-isothermal crystallization processes well. The growth methods of PEG and PEG-PCL are both three-dimensional spherulitic growth. The Mo model shows that the crystallization rate of PEG is greater than that of PEG-PCL.


2021 ◽  
Vol 55 (2) ◽  
pp. 293-304
Author(s):  
Jing Zhang ◽  
Yi-min Wu ◽  
Xu Ma ◽  
Bao-Yu Huang ◽  
Song Lv ◽  
...  

The isothermal curing kinetics of polymethacrylimide/nano-SiO2 composites were investigated using a dynamic thermomechanical analysis. The relative conversion was defined with the storage modulus. The Avrami model-fitting method, Friedman method and integral method were applied to analyze the curing kinetics. The storage modulus and loss modulus increased appreciably, spanning three orders of magnitude throughout the curing. The frequency correlation of the relative conversion was noticeable at 180 °C because the glass transition took place when the curing degree was not high enough. The Avrami model-fitting analysis gave good fits for the experimental data. The activation energy calculated with the Avrami equation changed from 65.46 kJ/mol to 25.28 kJ/mol at 180–190 °C, while at 190–200 °C, the activation energy changed from 107.14 kJ/mol to 63.82 kJ/mol. The model-free analysis revealed the dependence of the activation energy on the relative conversion. The activation energy increased from 104.3 kJ/mol to 130.6 kJ/mol with the use of the Friedman method when the relative conversion ranged between 0.4–0.8. Similarly, the activation energy calculated with the integral method increased from 71.5 kJ/mol to 103.4 kJ/mol. When the relative conversion exceeded 0.8, the activation energy decreased gradually. The mobility of the reactive groups was hindered and the crosslinking density of the composite was much higher. The curing kinetics became diffusion controlled. The activation energy of the PMI/SiO2 composite was greater than that of PMI, which could be attributed to the hindrance effect caused by nano-SiO2.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jorge Delgado ◽  
Claudia Ferreiro-Córdova ◽  
Alejandro Gil-Villegas

The natural variation of temperature at ambient conditions produces spontaneous patterns on the surface of chocolate, which result from fat bloom. These metastable patterns are peculiar because of their shape and cannot be obtained by controlled temperature conditions. The formation of these spontaneous grains on the surface of chocolate is studied on experimental and theoretical grounds.Three different kinds of experiments were conducted: observation of formed patterns in time, atomic force microscopy of the initial events on the grain formation and rheology of the melted chocolate. The patterns observed in our experiments follow the trends described by the Avrami model, which considers a constant value at all spatial scales of the rate of linear growth α that governs the formation of isolated grains, starting from molecular clusters. Through NVT-ensemble computer simulations, using a Mie-segmented coarse-grained model of triacylglycerides molecules, we studied the process of nucleation that starts the pattern growth. From simulation and experiment results it is possible to derive a realistic value of α.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 46
Author(s):  
Pedram Nasr ◽  
Hannah Leung ◽  
France-Isabelle Auzanneau ◽  
Michael A. Rogers

Complex morphologies, as is the case in self-assembled fibrillar networks (SAFiNs) of 1,3:2,4-Dibenzylidene sorbitol (DBS), are often characterized by their Fractal dimension and not Euclidean. Self-similarity presents for DBS-polyethylene glycol (PEG) SAFiNs in the Cayley Tree branching pattern, similar box-counting fractal dimensions across length scales, and fractals derived from the Avrami model. Irrespective of the crystallization temperature, fractal values corresponded to limited diffusion aggregation and not ballistic particle–cluster aggregation. Additionally, the fractal dimension of the SAFiN was affected more by changes in solvent viscosity (e.g., PEG200 compared to PEG600) than crystallization temperature. Most surprising was the evidence of Cayley branching not only for the radial fibers within the spherulitic but also on the fiber surfaces.


2021 ◽  
pp. 009524432098816
Author(s):  
E Díez ◽  
A Rodríguez ◽  
JM Gómez ◽  
J Galán

This paper analyses the thermal behaviour of six EVA copolymers supplied by REPSOL Company. In relation to crystallization and melting temperatures, both of them decrease when the vinyl acetate percentage increases, in agreement with the fact that polyethylene is a semi-crystalline material, whereas polyvinylacetate is an amorphous polymer. Actually, when the vinyl acetate percentage reaches 30%, the copolymer is practically amorphous. The non-isothermal crystallization was modelled with the modified Avrami model that showed, with the exception of EVA-460 (the material with higher vinyl acetate percentage), the presence of a secondary crystallization due to spherulite impingement in the later stage of the non-isothermal crystallization. The TG analysis indicated two weight loss stages, the first one due to acetic acid loss and the second one due to fragments of polymer backbone, which appear as two separate peaks in the DTG plots. Finally, due to the linear dependence of melting and crystallization temperatures and of the minimum value of DTG peaks on vinyl acetate percentage, it can be concluded that both TG and DSC techniques can be employed to determine the vinyl acetate percentage of a certain copolymer.


Sign in / Sign up

Export Citation Format

Share Document