michael type addition
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 22)

H-INDEX

31
(FIVE YEARS 3)

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 206
Author(s):  
Yu Guo ◽  
Jie Gu ◽  
Yuxin Jiang ◽  
Yanyan Zhou ◽  
Zhenshu Zhu ◽  
...  

Poly(ethylene glycol) (PEG)-based synthetic hydrogels based on Michael-type addition reaction have been widely used for cell culture and tissue engineering. However, recent studies showed that these types of hydrogels were not homogenous as expected since micro domains generated due to the fast reaction kinetics. Here, we demonstrated a new kind of method to prepare homogenous poly(ethylene glycol) hydrogels based on Michael-type addition using the side chain amine-contained short peptides. By introducing such a kind of short peptides, the homogeneity of crosslinking and mechanical property of the hydrogels has been also significantly enhanced. The compressive mechanical and recovery properties of the homogeneous hydrogels prepared in the presence of side chain amine-contained short peptides were more reliable than those of inhomogeneous hydrogels while the excellent biocompatibility remained unchanged. Furthermore, the reaction rate and gelation kinetics of maleimide- and thiol-terminated PEG were proved to be significantly slowed down in the presence of the side chain amine-contained short peptides, thus leading to the improved homogeneity of the hydrogels. We anticipate that this new method can be widely applied to hydrogel preparation and modification based on Michael-type addition gelation.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6035
Author(s):  
Alan X. Zhao ◽  
Louise E. Horsfall ◽  
Alison N. Hulme

Spiro compounds provide attractive targets in drug discovery due to their inherent three-dimensional structures, which enhance protein interactions, aid solubility and facilitate molecular modelling. However, synthetic methodology for the spiro-functionalisation of important classes of penicillin and cephalosporin β-lactam antibiotics is comparatively limited. We report a novel method for the generation of spiro-cephalosporin compounds through a Michael-type addition to the dihydrothiazine ring. Coupling of a range of catechols is achieved under mildly basic conditions (K2CO3, DMF), giving the stereoselective formation of spiro-cephalosporins (d.r. 14:1 to 8:1) in moderate to good yields (28−65%).


Author(s):  
Zahra Ghassemi ◽  
Sam Ruesing ◽  
Jennie B Leach ◽  
Silviya P Zustiak

Langmuir ◽  
2021 ◽  
Vol 37 (40) ◽  
pp. 11793-11803
Author(s):  
Saahil Sheth ◽  
Samuel Stealey ◽  
Nicole Y. Morgan ◽  
Silviya P. Zustiak

Author(s):  
Hongkun Xu ◽  
Xuan Qin ◽  
Yaping Zhang ◽  
Chuan Wan ◽  
Rui Wang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4689
Author(s):  
Jan Bojanowski ◽  
Anna Albrecht

The doubly decarboxylative Michael–type addition of pyridylacetic acid to chromone-3-carboxylic acids or coumarin-3-carboxylic acids has been developed. This protocol has been realized under Brønsted base catalysis, providing biologically interesting 4-(pyridylmethyl)chroman-2-ones and 2-(pyridylmethyl)chroman-4-ones in good or very good yields. The decarboxylative reaction pathway has been confirmed by mechanistic studies. Moreover, attempts to develop an enantioselective variant of the cascade are also described.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4332
Author(s):  
Fatemeh Kenari ◽  
Szilárd Molnár ◽  
Pál Perjési

Several biological effects of chalcones have been reported to be associated with their thiol reactivity. In vivo, the reactions can result in the formation of small-molecule or protein thiol adducts. Both types of reactions can play a role in the biological effects of this class of compounds. Progress of the reaction of 4-methyl- and 4-methoxychalcone with glutathione and N-acetylcysteine was studied by the HPLC-UV-VIS method. The reactions were conducted under three different pH conditions. HPLC-MS measurements confirmed the structure of the formed adducts. The chalcones reacted with both thiols under all incubation conditions. The initial rate and composition of the equilibrium mixtures depended on the ratio of the deprotonated form of the thiols. In the reaction of 4-methoxychalcone with N-acetylcysteine under strongly basic conditions, transformation of the kinetic adduct into the thermodynamically more stable one was observed. Addition of S-protonated N-acetylcysteine onto the polar double bonds of the chalcones showed different degrees of diastereoselectivity. Both chalcones showed a Michael-type addition reaction with the ionized and non-ionized forms of the investigated thiols. The initial reactivity of the chalcones and the equilibrium composition of the incubates showed a positive correlation with the degree of ionization of the thiols. Conversions showed systematic differences under each set of conditions. The observed differences can hint at the difference in reported biological actions of 4-methyl- and 4-methoxy-substituted chalcones.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 404
Author(s):  
Marco A. Obregón-Mendoza ◽  
Imilla I. Arias-Olguín ◽  
William Meza-Morales ◽  
Yair Alvarez-Ricardo ◽  
María Isabel Chávez ◽  
...  

The expected (E)-but-3-en-2-ones compounds I and II (half curcuminoids) were obtained by the Claisen–Schmidt reaction between aldehydes 3,4-dimethoxybenzaldehyde or 4-nitrobenzaldehyde with acetone. Concomitantly, 3-methylcyclohex-2-enones compounds III and IV arose from an unexpected reaction of but-3-en-2-ones in the cascade reaction of a Michael-type addition of a second molecule of acetone followed by Robinson annulation under strong basic conditions. Both enones exhibit the (E)-configuration, compound I displays s-trans conformation, whereas compound II exhibits conformational disorder as solid solution of s-cis and s-trans conformations. The related 3-methylcyclohex-2-enones exhibit envelope conformation. Compound III constitutes an example of the rarest case of racemic solid solution (pseudoracemate), where a lack of chiral discrimination with respect to the two enantiomers leads to an enantiomeric disorder of a racemic mixture with different occupancies at the reference site. Due to the lack of strong hydrogen-bond donors in all compounds, the crystal packing is mainly stabilized by weak intermolecular C-H···O interactions between the molecules. The present work provides a new perspective on the search for by-products normally overlooked in Claisen–Schmidt condensations.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 266
Author(s):  
Shaked Eliyahu ◽  
Alexandra Galitsky ◽  
Esther Ritov ◽  
Havazelet Bianco-Peled

We developed and characterized a new hydrogel system based on the physical and chemical interactions of pectin partially modified with thiol groups and chitosan modified with acrylate end groups. Gelation occurred at high pectin thiol ratios, indicating that a low acrylated chitosan concentration in the hydrogel had a profound effect on the cross-linking. Turbidity, Fourier transform infrared spectroscopy, and free thiol determination analyses were performed to determine the relationships of the different bonds inside the gel. At low pH values below the pKa of chitosan, more electrostatic interactions were formed between opposite charges, but at high pH values, the Michael-type addition reaction between acrylate and thiol took place, creating harder hydrogels. Swelling experiments and Young’s modulus measurements were performed to study the structure and properties of the resultant hydrogels. The nanostructure was examined using small-angle X-ray scattering. The texture profile analysis showed a unique property of hydrogel adhesiveness. By implementing changes in the preparation procedure, we controlled the hydrogel properties. This hybrid hydrogel system can be a good candidate for a wide range of biomedical applications, such as a mucosal biomimetic surface for mucoadhesive testing.


Sign in / Sign up

Export Citation Format

Share Document