curing kinetics
Recently Published Documents


TOTAL DOCUMENTS

628
(FIVE YEARS 131)

H-INDEX

42
(FIVE YEARS 7)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 222
Author(s):  
Sheikh Rehman ◽  
Julio Gomez ◽  
Elvira Villaro ◽  
Dwane Cossey ◽  
Panagiotis G. Karagiannidis

In this work, we report the synthesis and study of nanocomposites with a biobased epoxy/amine (Epilok 60-600G/Curamine 30-952) matrix reinforced with reduced graphene oxide (rGO) or functionalised with 3-glycidoxypropyltrimethoxysilane (GLYMO-rGO). These graphene related materials (GRMs) were first dispersed into a Curamine hardener using bath ultrasonication, followed by the addition of epoxy resin. Curing kinetics were studied by DSC under non-isothermal and isothermal conditions. The addition of 1.5 wt% of GLYMO-rGO into the epoxy matrix was found to increase the degree of cure by up to 12% and glass transition temperature by 14 °C. Mechanical testing showed that the addition of 0.05 wt% GLYMO-rGO improves Young’s modulus and tensile strength by 60% and 16%, respectively, compared to neat epoxy. Carbon fibre reinforced polymer (CFRP) laminates were prepared via hand lay up, using the nanocomposite system GRM/Epilok/Curamine as matrix, and were cut as CFRP adherents for lap shear joints. GRM/Epilok/Curamine was also used as adhesive to bond CFRP/CFRP and CFRP/aluminium adherents. The addition of 0.1 wt% GLYMO-rGO into the adhesive and CRFP adherents showed improved lap shear strength by 23.6% compared to neat resin, while in the case of CFRP/Aluminium joints the increase was 21.2%.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Reza Darvishi ◽  
Mahdi Darvishi ◽  
Ali Moshkriz

In the present research, the effect of Zn2Al layered double hydroxides (LDH) and nickel (II)-EDTA complex intercalated LDH (LDH-[Ni(EDTA)]-2) on the cure kinetics of glass fiber/epoxy prepreg (GEP) was explored using nonisothermal differential scanning calorimetry (DSC). The results showed that LDH caused a shift in the cure temperature toward lower temperatures while accelerating the curing of epoxy prepregs. The use of LDH-[Ni(EDTA)]-2 more profoundly influenced the acceleration of the curing process. The curing kinetics of prepregs was assessed through the differential isoconversional Friedman (FR) technique and the integration method of Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS). A decrease was detected in the E α value of glass fiber/LDH-[Ni(EDTA)]-2/epoxy (GELP) and glass fiber/LDH-[Ni(EDTA)]-2/epoxy (GELNiP) prepregs at small cure degrees relative to GEP, suggesting the catalytic effect of LDH or LDH-[Ni(EDTA)]-2 on the initial epoxy/amine reaction. Furthermore, LDH-[Ni(EDTA)]-2 performed better due to the catalyst role of nickel (II). Moreover, the activation energy exhibited lower reliance on the degree of conversion in the cases of GELP and GELNiP rather than pure epoxy prepregs. An autocatalytic model was used to evaluate the curing behavior of the system. Based on the results, the curing reaction of the epoxy prepreg can be described by the autocatalytic Šesták-Berggren model even after the incorporation of LDH or LDH-[Ni(EDTA)]-2. The kinetic parameters of the autocatalytic model (such as E α , A , m , n ) and the equations explaining the curing behavior of prepregs were introduced as well whose predictions were in line with the experimental findings.


2021 ◽  
pp. 131491
Author(s):  
Michael J. Minkler ◽  
Xinyu Hou ◽  
Nima Alizadeh ◽  
Maria Auad ◽  
Anton Schindler ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7072
Author(s):  
Sandra Magina ◽  
Nuno Gama ◽  
Luísa Carvalho ◽  
Ana Barros-Timmons ◽  
Dmitry Victorovitch Evtuguin

The feasibility of using lignosulfonate (LS) from acid sulphite pulping of eucalyptus wood as an unmodified polyol in the formulation of polyurethane (PU) adhesives was evaluated. Purified LS was dissolved in water to simulate its concentration in sulphite spent liquor and then reacted with 4,4′-diphenylmethane diisocyanate (pMDI) in the presence or absence of poly(ethylene glycol) with Mw 200 (PEG200) as soft crosslinking segment. The ensuing LS-based PU adhesives were characterized by infrared spectroscopy and thermal analysis techniques. The adhesion strength of new adhesives was assessed using Automated Bonding Evaluation System (ABES) employing wood strips as a testing material. The results showed that the addition of PEG200 contributed positively both to the homogenization of the reaction mixture and better crosslinking of the polymeric network, as well as to the interface interactions and adhesive strength. The latter was comparable to the adhesive strength recorded for a commercial white glue with shear stress values of almost 3 MPa. The optimized LS-based PU adhesive formulation was examined for the curing kinetics following the Kissinger and the Ozawa methods by non-isothermal differential scanning calorimetry, which revealed the curing activation energy of about 70 kJ·mol−1.


Materialia ◽  
2021 ◽  
pp. 101264
Author(s):  
L. H. Janitha Jeewantha ◽  
K.D.C. Emmanuel ◽  
H.M.C.M. Herath ◽  
J.A. Epaarachchi ◽  
M.M. Islam ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3474
Author(s):  
Shidi Huang ◽  
Guiming Zhang ◽  
Weiping Du ◽  
Huifang Chen

A time–temperature–transformation–viscosity (TTT-η) diagram can reflect changes in the physical states of a resin, which take on significance for the study of the curing process of polyurethane resin lenses. Coupling the differential scanning calorimetry (DSC) test, the curing kinetic parameters of 1,4-bis(isocyanatomethyl)cyclohexane (H6XDI)/2,3-bis((2-mercaptoethyl)thio)-1-propanethiol (BES) polyurethane system were obtained. By phenomenological modeling, the relationships between degree, temperature, and time were obtained. An isothermal DSC test was carried out at 423 K. Based on the DiBenedetto equation, the relationships between glass transition temperature, degree of cure, and time were obtained, and the glass transition temperature was thus correlated with temperature and time. The gelation time at different temperatures was measured by rotary rheometry, and the relationship between gelation time and gelation temperature was established. The time–temperature–transformation (TTT) diagram of H6XDI/BES system was constructed accordingly. Subsequently, a six-parameter double Arrhenius equation was used as the basis for the rheological study. The viscosity was examined during the curing process. The TTT-η diagram was obtained, which laid the theoretical foundation for the optimization and setting of processing parameters.


2021 ◽  
Author(s):  
TANNAZ TAYYARIAN ◽  
OMAR RODRIGUEZ-UICAB ◽  
TANJEE AFREEN ◽  
JANDRO L. ABOT

Thermoresistive characterization of CNTY monofilament composites was investigated by using the electrical response of a single carbon nanotube yarn (CNTY) embedded in a silicone polymer forming monofilament composites. Two room temperature vulcanizing (RTV) silicone rubbers with different polymerization mechanisms (OOMOO and Ecoflex) were used as the polymeric matrices. Continuous heating-cooling thermal cycling ranging from room temperature (RT~25 °C) to 80 °C was performed in order to determine the thermoresistive sensitivity, hysteresis and residual fractional change in electrical resistance after each cycle. The thermoresistive response was nearly linear, with negative temperature coefficient of resistance at the heating and cooling zones for CNTY/ OOMOO and CNTY/Ecoflex specimens. The average value of this coefficient at the heating and cooling sections was - 6.65×10-4 °C-1 for CNTY/OOMOO and -7.35×10-4 °C-1 for CNTY/Ecoflex. Both monofilament composites showed a negligible negative residual electrical resistance with an average value of ~ -0.08% for CNTY/OOMOO and ~ -0.20% for CNTY/Ecoflex after each cycle. The hysteresis yielded ~19.3% for CNTY/OOMOO and ~29.2% in CNTY/Ecoflex after each cycle. Therefore, the curing kinetics and viscosity play a paramount role in the electrical response of the CNTY immersed into these rubbery matrices.


Sign in / Sign up

Export Citation Format

Share Document