The influence of harvest and storage on the properties of and fast pyrolysis products from Miscanthus x giganteus

2013 ◽  
Vol 56 ◽  
pp. 247-259 ◽  
Author(s):  
C.E. Greenhalf ◽  
D.J. Nowakowski ◽  
N. Yates ◽  
I. Shield ◽  
A.V. Bridgwater
Fuel ◽  
2021 ◽  
Vol 296 ◽  
pp. 120682
Author(s):  
Enara Fernandez ◽  
Laura Santamaria ◽  
Maite Artetxe ◽  
Maider Amutio ◽  
Aitor Arregi ◽  
...  

2013 ◽  
Vol 104 ◽  
pp. 330-340 ◽  
Author(s):  
Ramin Azargohar ◽  
Kathlene L. Jacobson ◽  
Erin E. Powell ◽  
Ajay K. Dalai

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3188
Author(s):  
Paweł Kazimierski ◽  
Paulina Hercel ◽  
Katarzyna Januszewicz ◽  
Dariusz Kardaś

The aim of this study was to assess the possibility of using furniture waste for smokeless fuel production using the pyrolysis process. Four types of wood-based wastes were used in the pyrolysis process: pine sawdust (PS), chipboard (CB), medium-density fiberboard (MDF), and oriented strand board (OSB). Additionally, the slow and fast types of pyrolysis were compared, where the heating rates were 15 °C/min and 100 °C/min, respectively. Chemical analyses of the raw materials and the pyrolysis product yields are presented. A significant calorific value rise was observed for the solid pyrolysis products (from approximately 17.5 MJ/kg for raw materials up to approximately 29 MJ/kg for slow pyrolysis products and 31 MJ/kg for fast pyrolysis products). A higher carbon content of char was observed in raw materials (from approximately 48% for raw materials up to approximately 75% for slow pyrolysis products and approximately 82% for fast pyrolysis products) than after the pyrolysis process. This work presents the possibility of utilizing waste furniture material that is mostly composed of wood, but is not commonly used as a substrate for conversion into low-emission fuel. The results prove that the proposed solution produced char characterized by the appropriate properties to be classified as smokeless coal.


2020 ◽  
Vol 257 ◽  
pp. 113897 ◽  
Author(s):  
Anna Trubetskaya ◽  
Michael T Timko ◽  
Kentaro Umeki

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 660
Author(s):  
Bogdan Saletnik ◽  
Grzegorz Zaguła ◽  
Aneta Saletnik ◽  
Marcin Bajcar ◽  
Czesław Puchalski

This article presents the results of a two-year study investigating the effects of the fertilization of soil, with biochar and ash from plant biomass, on selected properties of the pyrolysis products obtained from basket willow (Salix viminalis L.) and giant miscanthus (Miscanthus x giganteus). The study was designed to determine whether soil enrichment through the use of organic fertilizers (ash added at the rate of 1.5 t ha−1, biochar added at the rate of 11.5 t ha−1 and a combination of them) in the cultivation of energy crops would affect the quality of pyrolysates obtained from these plants. The research goal was to use biochar and biomass ash to produce high-quality pyrolysates with fertilizing potential. The aboveground parts of the plants were subjected to the pyrolysis process, which was carried out in constant conditions, i.e., a temperature of 500 °C and duration of 10 min. The pyrolysates obtained were examined for their pH value, the content of absorbable forms of phosphorus (P2O5), potassium (K2O) and magnesium (Mg), as well as total carbon and the total content of selected macro- and micro-elements. The results of the current study show the beneficial effects of these soil fertilizers, reflected by the high quality and enhanced mineral contents of the biochars obtained. The highest total increase in the contents of absorbable forms of P, K and Mg was found in the pyrolysis products from basket willow fertilized with ash alone, amounting to 21.6% in relation to the pyrolysates from the control sample. As for the pyrolysates from the biomass of giant miscanthus, the greatest total increase in the contents of the elements, amounting to 44.4%, was identified when biochar and ash were used in combination. Soil amendments such as biochar and ash used for growing bioenergy crops can alter the aboveground plant quality. The subsequent pyrolysates created from these plants may be enriched and can be an alternative to mineral fertilizers. Natural amendment, such as high-quality pyrolysates, can be used in the cultivation of many plants. Additionally, conversion of plant biomass into pyrolysates is important for the environment, affecting the balance of carbon in the atmosphere through its capture and storage in a stable form outside the atmosphere, e.g., in soil.


2013 ◽  
Vol 27 (5) ◽  
pp. 2578-2587 ◽  
Author(s):  
Ghasideh Pourhashem ◽  
Sabrina Spatari ◽  
Akwasi A. Boateng ◽  
Andrew J. McAloon ◽  
Charles A. Mullen

Sign in / Sign up

Export Citation Format

Share Document