scholarly journals Exendin-4 promotes actin cytoskeleton rearrangement and protects cells from Nogo-A-Δ20 mediated spreading inhibition and growth cone collapse by down-regulating RhoA expression and activation via the PI3K pathway

2019 ◽  
Vol 109 ◽  
pp. 135-143
Author(s):  
Fei Zhao ◽  
jianwei Li ◽  
Renjie Wang ◽  
Huiyou Xu ◽  
Ke Ma ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Lin ◽  
Jia Rao ◽  
Xi-liang Zha ◽  
Hong Xu

Glomerular podocytes are highly differentiated cells whose foot processes, which are mainly maintained by the architecture of actin filaments, have a unique morphology. A rearrangement of F-actin in podocytes causes changes in their motility that involve foot process effacement and proteinuria in glomerular diseases. Members of the Rho family small GTPases, especially RhoA, Rac1, and Cdc42, are key molecules in the regulation of actin cytoskeleton rearrangement. Our previous study showed that angiopoietin-like 3 (Angptl3) can increase the motility of podocytesin vitro. In this study, we found that recombinant Angptl3 treatment, together with the activation of Rac1, could cause F-actin rearrangement in podocytes. We also found that these effects could be blocked by an integrinαVβ3inhibitor, implicating integrinαVβ3as the Angptl3 receptor in its effects on actin cytoskeleton rearrangement. In addition, we studied the molecular pathway for this process. Our results showed that in podocytes, Angptl3 could induce actin filament rearrangement, mainly in lamellipodia formation, and that this process was mediated by integrinαVβ3-mediated FAK and PI3K phosphorylation and Rac1 activation. Our results might provide a new explanation for the effect of Angptl3 on increasing podocyte motility.


2019 ◽  
Vol 16 (2) ◽  
pp. 183-189
Author(s):  
Y. M. Nemesh ◽  
S. V. Kropyvko

Aim. TKS5 is a key scaffold protein of invadopodia. In its absence, the cells completely lose the ability to form invadopodia. This fact makes TKS5 a potential target for cancer cure and one of the central proteins in the investigation of cancer cell invasion. Additionally, the question remains about the function of TKS5 in normal cells. Therefore, in order to extend knowledge about TKS5 role in healthy and invasive cells, we tested the TKS5 interaction with the proteins involved in signal transduction: PLCγ1, SRC, CRK, CSK; the proteins involved in plasma membrane remodeling: AMPH1, BIN1, CIN85, ITSN1, ITSN2; the protein involved in the actin cytoskeleton rearrangement: CTTN. Methods. We used the GST Pull-down assay to identify the protein-protein interaction. Results. We revealed that TKS5 SH3 domains interact with CIN85. There were identified TKS5 interactions with SH3 domains of CTTN, ITSN1, ITSN2, AMPH1 and BIN1. Conclusions. TKS5 interacts with CIN85, CTTN, ITSN1, ITSN2, AMPH1 and BIN1, which take part in membrane remodeling, endo-/exocytosis and actin cytoskeleton rearrangement. Keywords: TKS5, scaffold proteins, actin cytoskeleton, plasma membrane.


2014 ◽  
Vol 7 (340) ◽  
pp. ra81-ra81 ◽  
Author(s):  
K.-Y. Wu ◽  
M. He ◽  
Q.-Q. Hou ◽  
A.-L. Sheng ◽  
L. Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document