stress protection
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 52)

H-INDEX

40
(FIVE YEARS 5)

2021 ◽  
Vol 7 (12) ◽  
pp. 1078
Author(s):  
Jillian Romsdahl ◽  
Zachary Schultzhaus ◽  
Christina A. Cuomo ◽  
Hong Dong ◽  
Hashanthi Abeyratne-Perera ◽  
...  

The black yeast Exophiala lecanii-corni of the order Chaetothyriales is notable for its ability to produce abundant quantities of DHN-melanin. While many other Exophiala species are frequent causal agents of human infection, E. lecanii-corni CBS 102400 lacks the thermotolerance requirements that enable pathogenicity, making it appealing for use in targeted functional studies and biotechnological applications. Here, we report the stress tolerance characteristics of E. lecanii-corni, with an emphasis on the influence of melanin on its resistance to various forms of stress. We find that E. lecanii-corni has a distinct stress tolerance profile that includes variation in resistance to temperature, osmotic, and oxidative stress relative to the extremophilic and pathogenic black yeast Exophiala dermatitidis. Notably, the presence of melanin substantially impacts stress resistance in E. lecanii-corni, while this was not found to be the case in E. dermatitidis. The cellular context, therefore, influences the role of melanin in stress protection. In addition, we present a detailed analysis of the E. lecanii-corni genome, revealing key differences in functional genetic content relative to other ascomycetous species, including a significant decrease in abundance of genes encoding ribosomal proteins. In all, this study provides insight into how genetics and physiology may underlie stress tolerance and enhances understanding of the genetic diversity of black yeasts.


2021 ◽  
Author(s):  
Sophia Alisa Wild ◽  
Ian Gordon Cannell ◽  
Katarzyna Kania ◽  
Gregory James Hannon ◽  
Kirsty Sawicka ◽  
...  

Tumour heterogeneity is thought to be a major barrier to successful cancer treatment due to the presence of drug resistant clonal lineages. However, identifying the characteristics of such lineages that underpin resistance to therapy has remained challenging. Here we present WILD-seq; Wholistic Interrogation of Lineage Dynamics by sequencing, a platform that leverages expressed barcodes to simultaneously map clonal identities and transcriptional states at single cell resolution. Our optimised pipeline ensures recurrent representation of clonal lineages across animals and samples, facilitating analysis of clonal dynamics under perturbation. Application of WILD-seq to two triple negative mammary carcinoma mouse models, identified changes in clonal abundance, gene expression and microenvironment in response to JQ1 or taxane chemotherapy. WILD-seq reveals oxidative stress protection as a major mechanism of taxane resistance that renders our tumour models collaterally sensitive to non-essential amino acid deprivation. In summary, WILD-seq enables facile coupling of lineage and gene expression in vivo to elucidate clone-specific pathways of resistance to cancer therapies.


2021 ◽  
Author(s):  
Yusu Xie ◽  
Liusuo Zhang

Salinity is a critical abiotic factor for all living organisms. The ability to adapt to different salinity environments determines an organism′s survival and ecological niches. Litoditis marina is a euryhaline marine nematode widely distributed in coastal ecosystems all over the world, although numerous genes involved in its salinity response have been reported, the adaptive mechanisms underlying its euryhalinity remain unexplored. Here, we utilized worms which have been acclimated to either low salinity or high salinity conditions and evaluated their basal gene expression at both transcriptomic and proteomic levels. We found that several conserved regulators, including osmolytes biosynthesis genes, transthyretin-like family genes, V-type H+-transporting ATPase and potassium channel genes, were involved in both short-term salinity stress response and long-term acclimation processes. In addition, we identified genes related to cell volume regulation, such as actin regulatory genes, Rho family small GTPases and diverse ion transporters, might contribute to hyposaline acclimation, while the glycerol biosynthesis genes gpdh-1 and gpdh-2 accompanied hypersaline acclimation in L. marina. Furthermore, gpdh-2 might play an essential role in transgenerational inheritance of osmotic stress protection in L. marina as in its relative nematode Caenorhabditis elegans. Hereby, this study paves the way for further in-depth exploration on adaptive mechanisms underlying euryhalinity, and may also contribute to the studies of healthy ecosystems in the context of global climate change.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohan Sharma ◽  
Muhammed Jamsheer K. ◽  
Brihaspati Narayan Shukla ◽  
Manvi Sharma ◽  
Prakhar Awasthi ◽  
...  

Global warming exhibits profound effects on plant fitness and productivity. To withstand stress, plants sacrifice their growth and activate protective stress responses for ensuring survival. However, the switch between growth and stress is largely elusive. In the past decade, the role of the target of rapamycin (TOR) linking energy and stress signalling is emerging. Here, we have identified an important role of Glucose (Glc)-TOR signalling in plant adaptation to heat stress (HS). Glc via TOR governs the transcriptome reprogramming of a large number of genes involved in heat stress protection. Downstream to Glc-TOR, the E2Fa signalling module regulates the transcription of heat shock factors through direct recruitment of E2Fa onto their promoter regions. Also, Glc epigenetically regulates the transcription of core HS signalling genes in a TOR-dependent manner. TOR acts in concert with p300/CREB HISTONE ACETYLTRANSFERASE1 (HAC1) and dictates the epigenetic landscape of HS loci to regulate thermotolerance. Arabidopsis plants defective in TOR and HAC1 exhibited reduced thermotolerance with a decrease in the expression of core HS signalling genes. Together, our findings reveal a mechanistic framework in which Glc-TOR signalling through different modules integrates stress and energy signalling to regulate thermotolerance.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1617
Author(s):  
Yanis A. Idres ◽  
Didier Tousch ◽  
Guillaume Cazals ◽  
Aurélien Lebrun ◽  
Sarah Naceri ◽  
...  

The aim of our study was to identify novel molecules able to induce an adaptative response against oxidative stress during the first stages of metabolic syndrome. A cellular survival in vitro test against H2O2-based test was applied after pretreatment with various natural bitter Asteraceae extracts. This screening revealed potent protection from burdock leaf extract. Using chromatography and LC-MS—RMN, we then isolated and identified an original sesquiterpene lactone bioactive molecule: the Xanthatin-13-(pyrrolidine-2-carboxylic acid) (XPc). A real-time RT-qPCR experiment was carried out on three essential genes involved in oxidative stress protection: GPx, SOD, and G6PD. In presence of XPc, an over-expression of the G6PD gene was recorded, whereas no modification of the two others genes could be observed. A biochemical docking approach demonstrated that XPc had a high probability to directly interact with G6PD at different positions. One of the most probable docking sites corresponds precisely to the binding site of AG1, known to stabilize the G6PD dimeric form and enhance its activity. In conclusion, this novel sesquiterpene lactone XPc might be a promising prophylactic bioactive agent against oxidative stress and inflammation in chronic diseases such as metabolic syndrome or type 2 diabetes.


2021 ◽  
Vol 12 ◽  
Author(s):  
María Bernal ◽  
Ute Krämer

Numerous central biological processes depend on the participation of the essential elements iron (Fe) or copper (Cu), including photosynthesis, respiration, cell wall remodeling and oxidative stress protection. Yet, both Fe and Cu metal cations can become toxic when accumulated in excess. Because of the potent ligand-binding and redox chemistries of these metals, there is a need for the tight and combined homeostatic control of their uptake and distribution. Several known examples pinpoint an inter-dependence of Fe and Cu homeostasis in eukaryotes, mostly in green algae, yeast and mammals, but this is less well understood in multicellular plants to date. In Arabidopsis, Cu deficiency causes secondary Fe deficiency, and this is associated with reduced in vitro ferroxidase activity and decreased root-to-shoot Fe translocation. Here we summarize the current knowledge of the cross-talk between Cu and Fe homeostasis and present a partial characterization of LACCASE12 (LAC12) that encodes a member of the multicopper oxidase (MCO) protein family in Arabidopsis. LAC12 transcript levels increase under Fe deficiency. The phenotypic characterization of two mutants carrying T-DNA insertions suggests a role of LAC12 in root-to-shoot Fe partitioning and in maintaining growth on Fe-deficient substrates. A molecular understanding of the complex interactions between Fe and Cu will be important for combating Fe deficiency in crops and for advancing biofortification approaches.


2021 ◽  
Vol 7 (33) ◽  
pp. eabg3088
Author(s):  
Erika P. Santoro ◽  
Ricardo M. Borges ◽  
Josh L. Espinoza ◽  
Marcelo Freire ◽  
Camila S. M. A. Messias ◽  
...  

Beneficial microorganisms for corals (BMCs) ameliorate environmental stress, but whether they can prevent mortality and the underlying host response mechanisms remains elusive. Here, we conducted omics analyses on the coral Mussismilia hispida exposed to bleaching conditions in a long-term mesocosm experiment and inoculated with a selected BMC consortium or a saline solution placebo. All corals were affected by heat stress, but the observed “post-heat stress disorder” was mitigated by BMCs, signified by patterns of dimethylsulfoniopropionate degradation, lipid maintenance, and coral host transcriptional reprogramming of cellular restructuration, repair, stress protection, and immune genes, concomitant with a 40% survival rate increase and stable photosynthetic performance by the endosymbiotic algae. This study provides insights into the responses that underlie probiotic host manipulation. We demonstrate that BMCs trigger a dynamic microbiome restructuring process that instigates genetic and metabolic alterations in the coral host that eventually mitigate coral bleaching and mortality.


2021 ◽  
Vol 14 (8) ◽  
pp. 703
Author(s):  
Anna Maria Tolomeo ◽  
Santina Quarta ◽  
Alessandra Biasiolo ◽  
Mariagrazia Ruvoletto ◽  
Michela Pozzobon ◽  
...  

Extracellular vesicles (EVs) are increasingly studied as vectors for drug delivery because they can transfer a variety of molecules across biological barriers. SerpinB3 is a serine protease inhibitor that has shown a protective anti-apoptotic function in a variety of stressful conditions. The aim of this study was to evaluate protection from oxidative stress-induced damage, using extracellular vesicles that overexpress SerpinB3 (EVs-SB3) in order to enhance the effect of extracellular vesicles on cellular homeostasis. EVs-SB3s were obtained from HepG2 cells engineered to overexpress SerpinB3 and they revealed significant proteomic changes, mostly characterized by a reduced expression of other proteins compared with EVs from non-engineered cells. These EV preparations showed a significantly higher protection from H2O2 induced oxidative stress in both the hepatoma cell line and in primary cardiomyocytes, compared to cells treated with naïve EVs or SerpinB3 alone, used at the same concentration. In conclusion, the induction of SerpinB3 transgene expression results in the secretion of EVs enriched with the protein product that exhibits enhanced cytoprotective activity, compared with naïve EVs or the nude SerpinB3 protein.


Sign in / Sign up

Export Citation Format

Share Document