AL-1-induced Growth Cone Collapse of Rat Cortical Neurons is Correlated with REK7 Expression and Rearrangement of the Actin Cytoskeleton

1997 ◽  
Vol 9 (1) ◽  
pp. 177-188 ◽  
Author(s):  
Leonie Meima ◽  
Ivar J. Kljavin ◽  
Paul Moran ◽  
Ai Shih ◽  
John W. Winslow ◽  
...  
2021 ◽  
Author(s):  
Max Hofmann ◽  
Lucas Biller ◽  
Uwe Michel ◽  
Mathias Bähr ◽  
Jan Christoph Koch

The axonal cytoskeleton is organized in a highly periodic structure, the membrane-associated periodic skeleton (MPS), which is essential to maintain the structure and function of the axon. Here, we use stimulated emission depletion microscopy (STED) of primary rat cortical neurons in microfluidic chambers to analyze the temporal and spatial sequence of MPS formation at the distal end of growing axons and during regeneration after axotomy. We demonstrate that the MPS does not extend continuously into the growing axon but develops from patches of periodic β-spectrin II arrangements that grow and coalesce into a continuous scaffold. We estimate that the underlying sequence of nucleation, elongation, and subsequent coalescence of periodic β-spectrin II patches takes around 15 hours. Strikingly, we find that development of the MPS occurs faster in regenerating axons after axotomy and note marked differences in the morphology of the growth cone and adjacent axonal regions between regenerating and unlesioned axons. Moreover, we find that inhibition of the spectrin-cleaving enzyme calpain accelerates MPS formation in regenerating axons and increases the number of regenerating axons after axotomy. Taken together, we provide here a detailed nanoscale analysis of MPS development in growing axons.


2013 ◽  
Vol 11 (8) ◽  
pp. 1030-1037 ◽  
Author(s):  
Tao Luo ◽  
Wei Jiang ◽  
Yan Kong ◽  
Sheng Li ◽  
Feng He ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Thu T. Duong ◽  
James Lim ◽  
Vidyullatha Vasireddy ◽  
Tyler Papp ◽  
Hung Nguyen ◽  
...  

Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ acrossin vitroand ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons. Each cell type was exposed to three multiplicity of infections (MOI: 1E4, 1E5, and 1E6 vg/cell). After 24, 48, 72, and 96 h posttransduction, GFP-expressing cells were examined and compared across dosage, time, and cell type. Retinal pigmented epithelium showed highest AAV-eGFP expression and iPSC cortical the lowest. At an MOI of 1E6 vg/cell, all serotypes show measurable levels of AAV-eGFP expression; moreover, AAV7m8 and AAV6 perform best across MOI and cell type. We conclude that serotype tropism is not only capsid dependent but also cell type plays a significant role in transgene expression dynamics.


2006 ◽  
Vol 106 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Ju Yeon Ban ◽  
Soon Ock Cho ◽  
Sang Bum Koh ◽  
Kyung-Sik Song ◽  
KiWhan Bae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document