scholarly journals Hair follicle bulge-derived stem cells promote tissue regeneration during skin expansion

2020 ◽  
Vol 132 ◽  
pp. 110805
Author(s):  
Xiaoxi Cheng ◽  
Zhou Yu ◽  
Yajuan Song ◽  
Yu Zhang ◽  
Jing Du ◽  
...  
Science ◽  
2019 ◽  
Vol 366 (6470) ◽  
pp. 1218-1225 ◽  
Author(s):  
Shiri Gur-Cohen ◽  
Hanseul Yang ◽  
Sanjeethan C. Baksh ◽  
Yuxuan Miao ◽  
John Levorse ◽  
...  

Tissues rely on stem cells (SCs) for homeostasis and wound repair. SCs reside in specialized microenvironments (niches) whose complexities and roles in orchestrating tissue growth are still unfolding. Here, we identify lymphatic capillaries as critical SC-niche components. In skin, lymphatics form intimate networks around hair follicle (HF) SCs. When HFs regenerate, lymphatic–SC connections become dynamic. Using a mouse model, we unravel a secretome switch in SCs that controls lymphatic behavior. Resting SCs express angiopoietin-like protein 7 (Angptl7), promoting lymphatic drainage. Activated SCs switch to Angptl4, triggering transient lymphatic dissociation and reduced drainage. When lymphatics are perturbed or the secretome switch is disrupted, HFs cycle precociously and tissue regeneration becomes asynchronous. In unearthing lymphatic capillaries as a critical SC-niche element, we have learned how SCs coordinate their activity across a tissue.


2007 ◽  
Vol 179 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Irene Siegl-Cachedenier ◽  
Ignacio Flores ◽  
Peter Klatt ◽  
Maria A. Blasco

Organ homeostasis and organismal survival are related to the ability of stem cells to sustain tissue regeneration. As a consequence of accelerated telomerase shortening, telomerase-deficient mice show defective tissue regeneration and premature death. This suggests a direct impact of telomere length and telomerase activity on stem cell biology. We recently found that short telomeres impair the ability of epidermal stem cells to mobilize out of the hair follicle (HF) niche, resulting in impaired skin and hair growth and in the suppression of epidermal stem cell proliferative capacity in vitro. Here, we demonstrate that telomerase reintroduction in mice with critically short telomeres is sufficient to correct epidermal HF stem cell defects. Additionally, telomerase reintroduction into these mice results in a normal life span by preventing degenerative pathologies in the absence of increased tumorigenesis.


2015 ◽  
Vol 05 (999) ◽  
pp. 1-1
Author(s):  
Abu Bakar Mohd Hilmi ◽  
Mohd Noor Norhayati ◽  
Ahmad Sukari Halim ◽  
Chin Keong Lim ◽  
Zulkifli Mustafa ◽  
...  

Author(s):  
Hirofumi Kiyokawa ◽  
Akira Yamaoka ◽  
Chisa Matsuoka ◽  
Tomoko Tokuhara ◽  
Takaya Abe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document