scholarly journals CRISPR is a useful biological tool for detecting nucleic acid of SARS-CoV-2 in human clinical samples

2021 ◽  
pp. 111772
Author(s):  
Md. Rashidur Rahman ◽  
Md. Amjad Hossain ◽  
Md. Mozibullah ◽  
Fateh Al Mujib ◽  
Afrina Afrose ◽  
...  
2021 ◽  
Vol 7 (5) ◽  
pp. eabc7802
Author(s):  
Kai Shi ◽  
Shiyi Xie ◽  
Renyun Tian ◽  
Shuo Wang ◽  
Qin Lu ◽  
...  

Artificial nucleic acid circuits with precisely controllable dynamic and function have shown great promise in biosensing, but their utility in molecular diagnostics is still restrained by the inability to process genomic DNA directly and moderate sensitivity. To address this limitation, we present a CRISPR-Cas–powered catalytic nucleic acid circuit, namely, CRISPR-Cas–only amplification network (CONAN), for isothermally amplified detection of genomic DNA. By integrating the stringent target recognition, helicase activity, and trans-cleavage activity of Cas12a, a Cas12a autocatalysis-driven artificial reaction network is programmed to construct a positive feedback circuit with exponential dynamic in CONAN. Consequently, CONAN achieves one-enzyme, one-step, real-time detection of genomic DNA with attomolar sensitivity. Moreover, CONAN increases the intrinsic single-base specificity of Cas12a, and enables the effective detection of hepatitis B virus infection and human bladder cancer–associated single-nucleotide mutation in clinical samples, highlighting its potential as a powerful tool for disease diagnostics.


ACS Sensors ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 1348-1356
Author(s):  
Jin-Yuan Chen ◽  
Liang-Yong Yang ◽  
Zhou-Jie Liu ◽  
Qing-Xia Wei ◽  
Ying Zhang ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252757
Author(s):  
Miyuki Mizoguchi ◽  
Sohei Harada ◽  
Koh Okamoto ◽  
Yoshimi Higurashi ◽  
Mahoko Ikeda ◽  
...  

Background A number of nucleic acid amplification tests (NAATs) for SARS-CoV-2 with different reagents have been approved for clinical use in Japan. These include research kits approved under emergency use authorization through simplified process to stabilize the supply of the reagents. Although these research kits have been increasingly used in clinical practice, limited data is available for the diagnostic performance in clinical settings. Methods We compared sensitivity, specificity, and cycle threshold (Ct) values obtained by NAATs using 10 kits approved in Japan including eight kits those receiving emergency use authorization using 69 frozen-stored clinical samples including 23 positive samples with various Ct values and 46 negative samples. Results Viral copy number of the frozen-stored samples determined with LightMix E-gene test ranged from 0.6 to 84521.1 copies/μL. While no false-positive results were obtained by any of these tests (specificity: 100% [95% CI, 88.9%-100%]), sensitivity of the nine tests ranged from 68.2% [95% CI, 45.1%-86.1%] to 95.5% [95% CI, 77.2%-99.9%] using LightMix E-gene test as the gold standard. All tests showed positive results for all samples with ≥100 copies/μL. Significant difference of Ct values even among tests amplifying the same genetic region (N1-CDC, N2) was also observed. Conclusion Difference in the diagnostic performance was observed among NAATs approved in Japan. Regarding diagnostic kits for emerging infectious diseases, a system is needed to ensure both rapidity of reagent supply and accuracy of diagnosis. Ct values, which are sometimes regarded as a marker of infectivity, are not interchangeable when obtained by different assays.


Author(s):  
G. G. Li ◽  
Z. Lv ◽  
Y. S. Wang ◽  
J. F. Li ◽  
L. F. Feng ◽  
...  

The 2019 novel coronavirus (2019-nCov) has caused increasing number of infected cases globally. This study was performed to analyze information regarding the transmission route and presence of viral nucleic acids on several clinical samples. Confirmed 2019-nCov-infected cases were identified in Dongyang and were treated according to guidelines for the diagnosis of 2019-nCov infection released by the National Health Commission. Information regarding the contacts that the infected people had was collected to determine whether it caused clustered cases. A series of successive nucleic acid examination of feces, oropharyngeal swabs, and sputum was also performed, and the results were analyzed. A total of 19 confirmed cases of 2019-nCov infection were identified in Dongyang, Zhejiang Province, China. Five cases showed severe symptoms, and the remaining ones showed mild manifestations. Ten cases infected from two asymptomatic individuals were clustered into two groups. Among 14 cases with consecutive nucleic acid test results, four patients showed positive results in feces after their negative conversion in oropharyngeal swabs. Asymptomatic individuals with the virus could cause 2019-nCov clustered cases, and the clustered cases may differ from sporadic cases on age and length of hospitalization. In addition, nucleic acids in feces last longer than those in oropharyngeal swabs.


2012 ◽  
Vol 50 (12) ◽  
pp. 4147-4150 ◽  
Author(s):  
M. R. Hasan ◽  
R. Tan ◽  
G. N. Al-Rawahi ◽  
E. Thomas ◽  
P. Tilley

2020 ◽  
Author(s):  
Yangyang Sun ◽  
Lei Yu ◽  
Chengxi Liu ◽  
Wei Chen ◽  
Dechang Li ◽  
...  

Abstract Background: COVID-19 has spread rapidly around the world, affecting almost every person. When lifting certain mandatory measures for an economic restart, robust surveillance must be established and implemented, with nucleic acid detection for SARS-CoV-2 as an essential component. Methods: We designed RT-RPA (Reverse Transcription and Recombinase Polymerase Isothermal Amplification) primers of RdRp gene and N gene according to the SARS-CoV-2 gene sequence. We optimized the components in the reaction so that the detection process could be carried out in one tube. The specificity was demonstrated through detecting nucleic acid samples from seven human coronaviruses. Clinical samples were used to validate the platform and all results were compared to rRT-PCR. RNA standards diluted by different gradients were used to demonstrate the limit of detection. Furthermore, we have developed a lateral flow assay based on OR-DETECTR for the detection of COVID-19. Results: We have developed a o ne-tube detection platform based on R T- R PA and DNA Endonuclease-Targeted CRISPR Trans Reporter ( DETECTR ) technology, termed OR-DETECTR, to detect SARS-CoV-2. The detection process is completed in one tube, and the time is 50min. The method can specifically detect SARS-CoV-2 from seven human coronaviruses with a low detection limit of 2.5 copies/µl input. Results from six SARS-CoV-2 patient samples, eight samples from patients with fever but no SARS-CoV-2 infection, and one mixed sample from 40 negative controls showed that OR-DETECTR is 100% consistent with rRT-PCR. Furthermore, we have developed a lateral flow assay based on OR-DETECTR for the detection of COVID-19. Conclusions: OR-DETECTR detection platform is rapid, accurate, tube closed, easy-to-operate, and free of large instruments for COVID-19 detection.


Author(s):  
Pei Wang ◽  
Chao Ma ◽  
Xue Zhang ◽  
Lizhan Chen ◽  
Longyu Yi ◽  
...  

The pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to more than 117 million reported cases and 2.6 million deaths. Accurate diagnosis technologies are vital for controlling this pandemic. Reverse transcription (RT)-based nucleic acid detection assays have been developed, but the strict sample processing requirement of RT has posed obstacles on wider applications. This study established a ligation and recombinase polymerase amplification (L/RPA) combined assay for rapid detection of SARS-CoV−2 on genes N and ORF1ab targeting the specific biomarkers recommended by the China CDC. Ligase-based strategies usually have a low-efficiency problem on RNA templates. This study has addressed this problem by using a high concentration of the T4 DNA ligase and exploiting the high sensitivity of RPA. Through selection of the ligation probes and optimization of the RPA primers, the assay achieved a satisfactory sensitivity of 101 viral RNA copies per reaction, which was comparable to RT-quantitative polymerase chain reaction (RT-qPCR) and other nucleic acid detection assays for SARS-CoV−2. The assay could be finished in less than 30 min with a simple procedure, in which the requirement for sophisticated thermocycling equipment had been avoided. In addition, it avoided the RT procedure and could potentially ease the requirement for sample processing. Once validated with clinical samples, the L/RPA assay would increase the practical testing availability of SARS-CoV-2. Moreover, the principle of L/RPA has an application potential to the identification of concerned mutations of the virus.


2021 ◽  
Author(s):  
Shuang Wu ◽  
Xiaolu Shi ◽  
Qiongcheng Chen ◽  
Yixiang Jiang ◽  
Le Zuo ◽  
...  

Abstract Background: SARS-CoV-2 is a newly emerged coronavirus, causing the coronavirus disease 2019 (COVID-19) outbreak in December, 2019. As drugs and vaccines of COVID-19 remain in development, accurate virus detection plays a crucial role in the current public health crisis. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) kits have been reliably used for detection of SARS-CoV-2 RNA since the beginning of the COVID-19 outbreak, whereas isothermal nucleic acid amplification-based point-of-care automated kits have also been considered as a simpler and rapid alternative. However, as these kits have only been developed and applied clinically within a short timeframe, their clinical performance has not been adequately evaluated to date. We describe a comparative study between a newly developed cross-priming isothermal amplification (CPA) kit (Kit A) and five RT-qPCR kits (Kits B–F) to evaluate their sensitivity, specificity, predictive values and accuracy. Methods: Fifty-two clinical samples were used including throat swabs (n=30), nasal swabs (n=7), nasopharyngeal swabs (n=7) and sputum specimens (n=8), comprising confirmed (n=26) and negative cases (n=26). SARS-CoV-2 detection was simultaneously performed on each sample using six nucleic acid amplification kits. The sensitivity, specificity, positive/negative predictive values (PPV/NPV) and the accuracy for each kit were assessed using clinical manifestation and molecular diagnoses as the reference standard. Reproducibility for RT-qPCR kits was evaluated in triplicate by three different operators using a SARS-CoV-2 RNA-positive sample. On the basis of the six kits’ evaluation results, CPA kit (Kit A) and two RT-qPCR Kits (Kit B and F) were applied to the SARS-CoV-2 detection in close-contacts of COVID-19 patients. Results: For Kit A, the sensitivity, specificity, PPV/NPV and accuracy were 100%. Among the five RT-qPCR kits, Kits B, C and F had good agreement with the clinical diagnostic reports (Kappa≥0.75); Kits D and E were less congruent (0.4≤Kappa<0.75). Differences between all kits were statistically significant (P<0.001). The reproducibility of RT-qPCR kits was determined using a coefficients of variation (CV) between 0.95% and 2.57%, indicating good reproducibility. Conclusions: This is the first comparative study to evaluate CPA and RT-qPCR kits’ specificity and sensitivity for SARS-CoV-2 detection, and could serve as a reference for clinical laboratories, thus informing testing protocols amid the rapidly progressing COVID-19 pandemic. Keywords: SARS-CoV-2; COVID-19; nucleic acid detection; real-time reverse transcriptase PCR (RT-qPCR); cross-priming isothermal amplification (CPA)


Sign in / Sign up

Export Citation Format

Share Document