scholarly journals Disrupted in Schizophrenia 1 Modulates Medial Prefrontal Cortex Pyramidal Neuron Activity Through cAMP Regulation of Transient Receptor Potential C and Small-Conductance K+ Channels

2014 ◽  
Vol 76 (6) ◽  
pp. 476-485 ◽  
Author(s):  
Lynda El-Hassar ◽  
Arthur A. Simen ◽  
Alvaro Duque ◽  
Kiran D. Patel ◽  
Leonard K. Kaczmarek ◽  
...  
2016 ◽  
Vol 29 (6) ◽  
pp. 324-329 ◽  
Author(s):  
Christian Kirkedal ◽  
Gregers Wegener ◽  
Fabricio Moreira ◽  
Sâmia Regiane Lourenco Joca ◽  
Nico Liebenberg

ObjectiveThe cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models.MethodsWe investigated this assumption by administering the dual inhibitor of AEA hydrolysis and TRPV1 activationN-arachidonoyl-serotonin (AA-5HT) into the medial prefrontal cortex of rats. AA-5HT was given in three different doses (0.125, 0.250, 0.500 nmol/0.4 µl/side) and rat behaviour was assessed in the forced swim test.ResultsOur results show significant antidepressant-like effect of AA-5HT (0.250 nmol) but no effects of low or high doses. The effect of 0.250 nmol AA-5HT was partially attenuated when coadministering the inverse CB1-agonist rimonabant (1.6 µg).ConclusionA 0.250 nmol of AA-5HT administration into the medial prefrontal cortex induced a significant antidepressant-like effect that was partially attenuated by locally blocking CB1-receptor.


2020 ◽  
Vol 21 (15) ◽  
pp. 5403
Author(s):  
Antonella Amato ◽  
Simona Terzo ◽  
Laura Lentini ◽  
Pierenrico Marchesa ◽  
Flavia Mulè

The transient receptor potential-melastatin 8 (TRPM8) is a non-selective Ca2+-permeable channel, activated by cold, membrane depolarization, and different cooling compounds. TRPM8 expression has been found in gut mucosal, submucosal, and muscular nerve endings. Although TRPM8 plays a role in pathological conditions, being involved in visceral pain and inflammation, the physiological functions in the digestive system remain unclear as yet. The aims of the present study were: (i) to verify the TRPM8 expression in human distal colon; (ii) to examine the effects of TRPM8 activation on colonic contractility; (iii) to characterize the mechanism of action. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting were used to analyze TRPM8 expression. The responses of human colon circular strips to different TRPM8 agonists [1-[Dialkyl-phosphinoyl]-alkane (DAPA) 2–5, 1-[Diisopropyl-phosphinoyl]-alkane (DIPA) 1–7, DIPA 1–8, DIPA 1–9, DIPA 1–10, and DIPA 1–12) were recorded using a vertical organ bath. The biomolecular analysis revealed gene and protein expression of TRPM8 in both mucosal and smooth muscle layers. All the agonists tested, except-DIPA 1–12, produced a concentration-dependent decrease in spontaneous contraction amplitude. The effect was significantly antagonized by 5-benzyloxytryptamine, a TRPM8 antagonist. The DIPA 1–8 agonist resulted in the most efficacious and potent activation among the tested molecules. The DIPA 1–8 effects were not affected by tetrodotoxin, a neural blocker, but they were significantly reduced by tetraethylammonium chloride, a non-selective blocker of K+ channels. Moreover, iberiotoxin, a blocker of the large-conductance Ca2+-dependent K+-channels, but not apamin, a blocker of small-conductance Ca2+-dependent K+ channels, significantly reduced the inhibitory DIPA 1–8 actions. The results of the present study demonstrated that TRPM8 receptors are also expressed in human distal colon in healthy conditions and that ligand-dependent TRPM8 activation is able to reduce the colonic spontaneous motility, probably by the opening of the large-conductance Ca2+-dependent K+-channels.


2015 ◽  
Vol 309 (12) ◽  
pp. H2031-H2041 ◽  
Author(s):  
Paulo W. Pires ◽  
Michelle N. Sullivan ◽  
Harry A. T. Pritchard ◽  
Jennifer J. Robinson ◽  
Scott Earley

Cerebral parenchymal arterioles (PA) regulate blood flow between pial arteries on the surface of the brain and the deeper microcirculation. Regulation of PA contractility differs from that of pial arteries and is not completely understood. Here, we investigated the hypothesis that the Ca2+ permeable vanilloid transient receptor potential (TRPV) channel TRPV3 can mediate endothelium-dependent dilation of cerebral PA. Using total internal reflection fluorescence microscopy (TIRFM), we found that carvacrol, a monoterpenoid compound derived from oregano, increased the frequency of unitary Ca2+ influx events through TRPV3 channels (TRPV3 sparklets) in endothelial cells from pial arteries and PAs. Carvacrol-induced TRPV3 sparklets were inhibited by the selective TRPV3 blocker isopentenyl pyrophosphate (IPP). TRPV3 sparklets have a greater unitary amplitude (ΔF/F0 = 0.20) than previously characterized TRPV4 (ΔF/F0 = 0.06) or TRPA1 (ΔF/F0 = 0.13) sparklets, suggesting that TRPV3-mediated Ca2+ influx could have a robust influence on cerebrovascular tone. In pressure myography experiments, carvacrol caused dilation of cerebral PA that was blocked by IPP. Carvacrol-induced dilation was nearly abolished by removal of the endothelium and block of intermediate (IK) and small-conductance Ca2+-activated K+ (SK) channels. Together, these data suggest that TRPV3 sparklets cause dilation of cerebral parenchymal arterioles by activating IK and SK channels in the endothelium.


Sign in / Sign up

Export Citation Format

Share Document