isopentenyl pyrophosphate
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 11)

H-INDEX

35
(FIVE YEARS 2)

JSMARTech ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 113-119
Author(s):  
Nina Regina Nathania ◽  
◽  
Jellyta Pricilla Mantow ◽  
Elsa Rahmania Criswahyudianti ◽  
Fachrur Rozi Atamimi ◽  
...  

Phenylketonuria (PKU) is known as a severe autosomal recessive disease caused by mutations in the expression enzyme, namely the PAH (Phenylalanine Hydroxylase) enzyme that causes the build-up of phenylalanine in the body. Untreated PKU affected brain damage and developmental problems. One of the strategies to reduce phenylalanine in the body is inhibiting B0AT1 activity using carotenoid and terpenoids compounds from Bok choy (Brassica rapa ssp.chinensis). In this study, we evaluated the nine carotenoid and terpenoid compounds from Bok choy as B0AT1 inhibitors. Nine Bok choy compounds, including alpha-carotene, beta-carotene, dimethylallyl pyrophosphate, isopentenyl pyrophosphate, lutein, neoxanthin, violaxanthin, geranylgeranyl diphosphate, and zeaxanthin were downloaded from PubChem database, while the 3D structure of B0AT1 was retrieved from Protein Data Bank RCSB. The compounds and B0AT1 were prepared by PyRx 0.8 version and Discovery Studio ver 21.1.1, then docked with Hex 8.0.0 and analyzed using Discovery Studio ver 21.1.1. This screening implies that three terpenoid compounds dimethylallyl pyrophosphate, isopentenyl pyrophosphate, and geranylgeranyl diphosphate interacts in C domain of B0AT1 while six carotenoid compounds, alpha carotene, beta-carotene, lutein, neoxanthin, violaxanthin, and zeaxanthin interacts in A domain and have possibility to inhibit B0AT1, because it interact with same A domain and have a stronger binding energy than phenylalanine. Alpha carotene has a same residue with phenylalanine, Phe144, making it potentially greater than other compound as inhibitors. Brassica rapa ssp. chinensis is indeed good for consumption by people with phenylketonuria, but it is also necessary to do a further compound screening in other low-phenylalanine diet foods to know which one is better as alternative phenylketonuria treatment.


2021 ◽  
Author(s):  
Megan Okada ◽  
Krithika Rajaram ◽  
Russell P. Swift ◽  
Amanda Mixon ◽  
J. Alan Maschek ◽  
...  

Isopentenyl pyrophosphate (IPP) is an essential metabolic output of the apicoplast organelle in Plasmodium falciparum malaria parasites and is required for prenylation-dependent vesicular trafficking and other cellular processes. We have elucidated a critical and previously uncharacterized role for IPP in apicoplast biogenesis. Inhibiting IPP synthesis blocks apicoplast elongation and inheritance by daughter merozoites, and apicoplast biogenesis is rescued by exogenous IPP and polyprenols. Knockout of the only known isoprenoid-dependent apicoplast pathway, tRNA prenylation by MiaA, has no effect on blood-stage parasites and thus cannot explain apicoplast reliance on IPP. However, we have localized an annotated polyprenyl synthase (PPS) to the apicoplast lumen. PPS knockdown is lethal to parasites, rescued by IPP, and blocks apicoplast biogenesis, thus explaining apicoplast dependence on isoprenoid synthesis. We hypothesize that PPS synthesizes long-chain polyprenols critical for apicoplast membrane fluidity and biogenesis. This work critically expands the paradigm for isoprenoid utilization in malaria parasites and identifies a novel essential branch of apicoplast metabolism suitable for therapeutic targeting.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Megan Okada ◽  
Ping Guo ◽  
Shai-anne Nalder ◽  
Paul A Sigala

Doxycycline (DOX) is a key antimalarial drug thought to kill Plasmodium parasites by blocking protein translation in the essential apicoplast organelle. Clinical use is primarily limited to prophylaxis due to delayed second-cycle parasite death at 1–3 µM serum concentrations. DOX concentrations > 5 µM kill parasites with first-cycle activity but are thought to involve off-target mechanisms outside the apicoplast. We report that 10 µM DOX blocks apicoplast biogenesis in the first cycle and is rescued by isopentenyl pyrophosphate, an essential apicoplast product, confirming an apicoplast-specific mechanism. Exogenous iron rescues parasites and apicoplast biogenesis from first- but not second-cycle effects of 10 µM DOX, revealing that first-cycle activity involves a metal-dependent mechanism distinct from the delayed-death mechanism. These results critically expand the paradigm for understanding the fundamental antiparasitic mechanisms of DOX and suggest repurposing DOX as a faster acting antimalarial at higher dosing whose multiple mechanisms would be expected to limit parasite resistance.


2020 ◽  
Author(s):  
Megan Okada ◽  
Ping Guo ◽  
Shai-anne Nalder ◽  
Paul A. Sigala

AbstractDoxycycline (DOX) is a key antimalarial drug thought to kill Plasmodium parasites by blocking protein translation in the essential apicoplast organelle. Clinical use is primarily limited to prophylaxis due to delayed second-cycle parasite death at 1-3 μM serum concentrations. DOX concentrations >5 μM kill parasites with first-cycle activity but have been ascribed to off-target mechanisms outside the apicoplast. We report that 10 μM DOX blocks apicoplast biogenesis in the first cycle and is rescued by isopentenyl pyrophosphate, an essential apicoplast product, confirming an apicoplast-specific mechanism. Exogenous iron rescues parasites and apicoplast biogenesis from first-but not second-cycle effects of 10 μM DOX, revealing that first-cycle activity involves a metal-dependent mechanism distinct from the delayed-death mechanism. These results critically expand the paradigm for understanding the fundamental antiparasitic mechanisms of DOX and suggest repurposing DOX as a faster-acting antimalarial at higher dosing whose multiple mechanisms would be expected to limit parasite resistance.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1433 ◽  
Author(s):  
Thomas Herrmann ◽  
Alina Suzann Fichtner ◽  
Mohindar Murugesh Karunakaran

About 1–5% of human blood T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains contain a rearrangement of Vγ9 with JP (TRGV9JP or Vγ2Jγ1.2) and are paired with Vδ2 (TRDV2)-containing δ-chains. These TCRs respond to phosphoantigens (PAg) such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is found in many pathogens, and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. Until recently, these cells were believed to be restricted to primates, while no such cells are found in rodents. The identification of three genes pivotal for PAg recognition encoding for Vγ9, Vδ2, and butyrophilin (BTN) 3 in various non-primate species identified candidate species possessing PAg-reactive Vγ9Vδ2 T cells. Here, we review the current knowledge of the molecular basis of PAg recognition. This not only includes human Vγ9Vδ2 T cells and the recent discovery of BTN2A1 as Vγ9-binding protein mandatory for the PAg response but also insights gained from the identification of functional PAg-reactive Vγ9Vδ2 T cells and BTN3 in the alpaca and phylogenetic comparisons. Finally, we discuss models of the molecular basis of PAg recognition and implications for the development of transgenic mouse models for PAg-reactive Vγ9Vδ2 T cells.


2020 ◽  
Author(s):  
Thomas R. Meister ◽  
Yong Tang ◽  
Michael J. Pulkoski-Gross ◽  
Ellen Yeh

AbstractPlasmodium parasites and related apicomplexans contain an essential “complex plastid” organelle of secondary endosymbiotic origin, the apicoplast. Biogenesis of this complex plastid poses a unique challenge requiring evolution of new cellular machinery. We previously conducted a mutagenesis screen for essential apicoplast biogenesis genes to discover organellar pathways with evolutionary and biomedical significance. Here we validate and characterize a gene candidate from our screen, Pf3D7_0913500. Using a conditional knockdown strain, we show that Pf3D7_0913500 depletion causes growth inhibition that is rescued by the sole essential product of the apicoplast, isopentenyl pyrophosphate (IPP), and results in apicoplast loss. Because Pf3D7_0913500 had no previous functional annotation, we name it apicoplast-minus IPP-rescued 4 (AMR4). AMR4 has an annotated CaaX Protease and Bacteriocin Processing (CPBP) domain, which in eukaryotes typically indicates a role in CaaX post-prenylation processing. Indeed, AMR4 is the only CaaX-like protease in Plasmodium parasites which are known to require protein prenylation, and we confirm that the conserved catalytic residue of AMR4 is required for its apicoplast function. However, we unexpectedly find that AMR4 does not act in a CaaX post-prenylation processing pathway in P. falciparum. Instead, we find that AMR4 is imported into the apicoplast and is derived from a cyanobacterial CPBP gene which was retained through both primary and secondary endosymbiosis. Our findings suggest that AMR4 is not a true CaaX protease, but instead acts in a conserved, uncharacterized chloroplast pathway that has been retained for complex plastid biogenesis.ImportancePlasmodium parasites, which cause malaria, and related apicomplexans are important human and veterinary pathogens. These parasites represent a highly divergent and understudied branch of eukaryotes, and as such often defy the expectations set by model organisms. One striking example of unique apicomplexan biology is the apicoplast, an essential but non-photosynthetic plastid derived from an unusual secondary (eukaryote-eukaryote) endosymbiosis. Endosymbioses are a major driver of cellular innovation, and apicoplast biogenesis pathways represent a hotspot for molecular evolution. We previously conducted an unbiased screen for apicoplast biogenesis genes in P. falciparum to uncover these essential and innovative pathways. Here, we validate a novel gene candidate from our screen and show that its role in apicoplast biogenesis does not match its functional annotation predicted by model eukaryotes. Our findings suggest that an uncharacterized chloroplast maintenance pathway has been reused for complex plastid biogenesis in this divergent branch of pathogens.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Mareike Bongers ◽  
Jordi Perez-Gil ◽  
Mark P Hodson ◽  
Lars Schrübbers ◽  
Tune Wulff ◽  
...  

Volatile isoprenoids produced by plants are emitted in vast quantities into the atmosphere, with substantial effects on global carbon cycling. Yet, the molecular mechanisms regulating the balance between volatile and non-volatile isoprenoid production remain unknown. Isoprenoids are synthesised via sequential condensation of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), with volatile isoprenoids containing fewer isopentenyl subunits. The DMAPP:IPP ratio could affect the balance between volatile and non-volatile isoprenoids, but the plastidic DMAPP:IPP ratio is generally believed to be similar across different species. Here we demonstrate that the ratio of DMAPP:IPP produced by hydroxymethylbutenyl diphosphate reductase (HDR/IspH), the final step of the plastidic isoprenoid production pathway, is not fixed. Instead, this ratio varies greatly across HDRs from phylogenetically distinct plants, correlating with isoprenoid production patterns. Our findings suggest that adaptation of HDR plays a previously unrecognised role in determining in vivo carbon availability for isoprenoid emissions, directly shaping global biosphere-atmosphere interactions.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1197 ◽  
Author(s):  
Micaela Giani ◽  
Jose María Miralles-Robledillo ◽  
Gloria Peiró ◽  
Carmen Pire ◽  
Rosa María Martínez-Espinosa

Bacterioruberin and its derivatives have been described as the major carotenoids produced by haloarchaea (halophilic microbes belonging to the Archaea domain). Recently, different works have revealed that some haloarchaea synthetize other carotenoids at very low concentrations, like lycopene, lycopersene, cis- and trans-phytoene, cis- and trans-phytofluene, neo-β-carotene, and neo-α-carotene. However, there is still controversy about the nature of the pathways for carotenogenesis in haloarchaea. During the last decade, the number of haloarchaeal genomes fully sequenced and assembled has increased significantly. Although some of these genomes are not fully annotated, and many others are drafts, this information provides a new approach to exploring the capability of haloarchaea to produce carotenoids. This work conducts a deeply bioinformatic analysis to establish a hypothetical metabolic map connecting all the potential pathways involved in carotenogenesis in haloarchaea. Special interest has been focused on the synthesis of bacterioruberin in members of the Haloferax genus. The main finding is that in almost all the genus analyzed, a functioning alternative mevalonic acid (MVA) pathway provides isopentenyl pyrophosphate (IPP) in haloarchaea. Then, the main branch to synthesized carotenoids proceeds up to lycopene from which β-carotene or bacterioruberin (and its precursors: monoanhydrobacterioriberin, bisanhydrobacterioruberin, dihydrobisanhydrobacteriuberin, isopentenyldehydrorhodopsin, and dihydroisopenthenyldehydrorhodopsin) can be made.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Ryo Yoshida ◽  
Tohru Yoshimura ◽  
Hisashi Hemmi

ABSTRACT The mevalonate pathway is a well-known metabolic route that provides biosynthetic precursors for myriad isoprenoids. An unexpected variety of the pathway has been discovered from recent studies on microorganisms, mainly on archaea. The most recently discovered example, called the “archaeal” mevalonate pathway, is a modified version of the canonical eukaryotic mevalonate pathway and was elucidated in our previous study using the hyperthermophilic archaeon Aeropyrum pernix. This pathway comprises four known enzymes that can produce mevalonate 5-phosphate from acetyl coenzyme A, two recently discovered enzymes designated phosphomevalonate dehydratase and anhydromevalonate phosphate decarboxylase, and two more known enzymes, i.e., isopentenyl phosphate kinase and isopentenyl pyrophosphate:dimethylallyl pyrophosphate isomerase. To show its wide distribution in archaea and to confirm if its enzyme configuration is identical among species, the putative genes of a lower portion of the pathway—from mevalonate to isopentenyl pyrophosphate—were isolated from the methanogenic archaeon Methanosarcina mazei, which is taxonomically distant from A. pernix, and were introduced into an engineered Escherichia coli strain that produces lycopene, a red carotenoid pigment. Lycopene production, as a measure of isoprenoid productivity, was enhanced when the cells were grown semianaerobically with the supplementation of mevalonolactone, which demonstrates that the archaeal pathway can function in bacterial cells to convert mevalonate into isopentenyl pyrophosphate. Gene deletion and complementation analysis using the carotenogenic E. coli strain suggests that both phosphomevalonate dehydratase and anhydromevalonate phosphate decarboxylase from M. mazei are required for the enhancement of lycopene production. IMPORTANCE Two enzymes that have recently been identified from the hyperthermophilic archaeon A. pernix as components of the archaeal mevalonate pathway do not require ATP for their reactions. This pathway, therefore, might consume less energy than other mevalonate pathways to produce precursors for isoprenoids. Thus, the pathway might be applicable to metabolic engineering and production of valuable isoprenoids that have application as pharmaceuticals. The archaeal mevalonate pathway was successfully reconstructed in E. coli cells by introducing several genes from the methanogenic or hyperthermophilic archaeon, which demonstrated that the pathway requires the same components even in distantly related archaeal species and can function in bacterial cells.


Sign in / Sign up

Export Citation Format

Share Document