Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor

2008 ◽  
Vol 99 (15) ◽  
pp. 6941-6948 ◽  
Author(s):  
Y. Vijaya Bhaskar ◽  
S. Venkata Mohan ◽  
P.N. Sarma
2018 ◽  
Vol 16 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Ensiyeh Taheri ◽  
Mohammad Mehdi Amin ◽  
Ali Fatehizadeh ◽  
Hamidreza Pourzamani ◽  
Bijan Bina ◽  
...  

2003 ◽  
Vol 48 (4) ◽  
pp. 155-162 ◽  
Author(s):  
S.P. Barnes ◽  
J. Keller

Anaerobic digestion of lignocellulosic material is carried out effectively in many natural microbial ecosystems including the rumen. A rumen-enhanced anaerobic sequencing batch reactor was used to investigate cellulose degradation to give analysis of overall process stoichiometry and rates of hydrolysis. The reactor achieved VFA production rates of 207-236 mg COD/L/h at a loading rate of 10 g/L/d. Overloading of the reactor resulted in elevated production of propionic acid, and on occasion, the presence of succinic acid. With improvements in mixing and solids wasting, the anaerobic sequencing batch reactor system could enable full-scale application of the process for treatment of cellulosic waste material.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 223
Author(s):  
Erlon Lopes Pereira ◽  
Alisson Carraro Borges ◽  
Greicelene Jesus da Silva

The wastewater from the biodiesel industry is an environmental problem, and from a sanitation resources perspective, the anaerobic sequencing batch reactor (ASBR) is an interesting alternative for wastewater treatment. A better understanding of ASBR operation behavior under the progressive increase of the organic loading rate (OLR) is crucial for upscaling. The objective of this study was to monitor an ASBR operating with an OLR ranging from 1.3 to 9.3 kgCOD m−3 d−1. The average chemical oxygen demand (COD) removal efficiencies of the ASBR were 52, 41, 47, and 11% for phases 1, 2, 3, and 4, respectively. The apparent kinetic coefficient, i.e., the rate of degradation of organic matter, was between 0.10 and 1.80 h−1, considering the kinetic model that considers the residual substrate concentration, which was the one that best fit the obtained data. The progressive increase in applied OLR modified the microbial biomass diversity, which in turn influenced the degradation kinetics of the organic matter. In addition, the values of the applied OLR of 5.1 kgCOD m−3 d−1 and a food to microorganism ratio (F/M) of 0.6 kgCOD kgVSS−1 d−1 were shown to be limiting values that promoted the overload of ASBR.


2006 ◽  
Vol 53 (6) ◽  
pp. 161-167 ◽  
Author(s):  
S.Y. Ahn ◽  
S.J. Kim ◽  
P.Y. Yang

This study investigated the bio-treatability of PCB contaminated oil for the development of design and operational parameters for the bioreactor. Input of external carbon and nutrient source in the aqueous phase was found to be required for the treatment of polychlorinated biphenyls (PCBs)-contaminated oil. Addition of surfactant was investigated for the emulsification of oil to reduce interference of contact with microorganisms and PCBs. The ratio of surfactant to oil was empirically optimized to 1 : 1. The higher PCB removal efficiency was obtained at 30 days of hydraulic retention time (HRT) in the semi-batch reactor study without cell recycle. The removal efficiency measured in mixed liquor was maintained at over 85% on average at 32±2 °C and 30% at 22±2 °C. More than 0.2 g/l/d of the organic loading rate was suggested to be maintained for various PCB loading rates (0.02–0.6 mg-PCB/l/d). For high biomass retaining and easy collection of treated oil, an Anaerobic Sequencing Batch Reactor (ASBR) was investigated. The removal of Aroclor was observed as more than 50% in the oil phase with 3 days reaction time and about 40% in overall phases, i.e. oil, liquid, biomass phases at 22±2 °C. US EPA verification results on the process performance are included in this presentation.


2018 ◽  
Vol 41 (11) ◽  
pp. 1401-1410 ◽  
Author(s):  
Xinhai Xu ◽  
Peilin Zhong ◽  
Chuanyi Zhang ◽  
Limei Yuan ◽  
Guangrong Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document