Bio-anaerobic treatability study for PCBs-contaminated oil

2006 ◽  
Vol 53 (6) ◽  
pp. 161-167 ◽  
Author(s):  
S.Y. Ahn ◽  
S.J. Kim ◽  
P.Y. Yang

This study investigated the bio-treatability of PCB contaminated oil for the development of design and operational parameters for the bioreactor. Input of external carbon and nutrient source in the aqueous phase was found to be required for the treatment of polychlorinated biphenyls (PCBs)-contaminated oil. Addition of surfactant was investigated for the emulsification of oil to reduce interference of contact with microorganisms and PCBs. The ratio of surfactant to oil was empirically optimized to 1 : 1. The higher PCB removal efficiency was obtained at 30 days of hydraulic retention time (HRT) in the semi-batch reactor study without cell recycle. The removal efficiency measured in mixed liquor was maintained at over 85% on average at 32±2 °C and 30% at 22±2 °C. More than 0.2 g/l/d of the organic loading rate was suggested to be maintained for various PCB loading rates (0.02–0.6 mg-PCB/l/d). For high biomass retaining and easy collection of treated oil, an Anaerobic Sequencing Batch Reactor (ASBR) was investigated. The removal of Aroclor was observed as more than 50% in the oil phase with 3 days reaction time and about 40% in overall phases, i.e. oil, liquid, biomass phases at 22±2 °C. US EPA verification results on the process performance are included in this presentation.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 223
Author(s):  
Erlon Lopes Pereira ◽  
Alisson Carraro Borges ◽  
Greicelene Jesus da Silva

The wastewater from the biodiesel industry is an environmental problem, and from a sanitation resources perspective, the anaerobic sequencing batch reactor (ASBR) is an interesting alternative for wastewater treatment. A better understanding of ASBR operation behavior under the progressive increase of the organic loading rate (OLR) is crucial for upscaling. The objective of this study was to monitor an ASBR operating with an OLR ranging from 1.3 to 9.3 kgCOD m−3 d−1. The average chemical oxygen demand (COD) removal efficiencies of the ASBR were 52, 41, 47, and 11% for phases 1, 2, 3, and 4, respectively. The apparent kinetic coefficient, i.e., the rate of degradation of organic matter, was between 0.10 and 1.80 h−1, considering the kinetic model that considers the residual substrate concentration, which was the one that best fit the obtained data. The progressive increase in applied OLR modified the microbial biomass diversity, which in turn influenced the degradation kinetics of the organic matter. In addition, the values of the applied OLR of 5.1 kgCOD m−3 d−1 and a food to microorganism ratio (F/M) of 0.6 kgCOD kgVSS−1 d−1 were shown to be limiting values that promoted the overload of ASBR.


2002 ◽  
Vol 45 (10) ◽  
pp. 219-224 ◽  
Author(s):  
C. Ruíz ◽  
M. Torrijos ◽  
P. Sousbie ◽  
J. Lebrato Martínez ◽  
R. Moletta ◽  
...  

Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.


2003 ◽  
Vol 48 (4) ◽  
pp. 155-162 ◽  
Author(s):  
S.P. Barnes ◽  
J. Keller

Anaerobic digestion of lignocellulosic material is carried out effectively in many natural microbial ecosystems including the rumen. A rumen-enhanced anaerobic sequencing batch reactor was used to investigate cellulose degradation to give analysis of overall process stoichiometry and rates of hydrolysis. The reactor achieved VFA production rates of 207-236 mg COD/L/h at a loading rate of 10 g/L/d. Overloading of the reactor resulted in elevated production of propionic acid, and on occasion, the presence of succinic acid. With improvements in mixing and solids wasting, the anaerobic sequencing batch reactor system could enable full-scale application of the process for treatment of cellulosic waste material.


2013 ◽  
Vol 137 ◽  
pp. 41-50 ◽  
Author(s):  
Jingwei Ma ◽  
Baisuo Zhao ◽  
Craig Frear ◽  
Quanbao Zhao ◽  
Liang Yu ◽  
...  

2009 ◽  
Vol 60 (9) ◽  
pp. 2245-2251 ◽  
Author(s):  
D. Martinez-Sosa ◽  
M. Torrijos ◽  
G. Buitron ◽  
P. Sousbie ◽  
P. H. Devillers ◽  
...  

An anaerobic sequencing batch reactor (AnSBR) was used to treat the dissolved air flotation skimmings from a cooked pork meat plant. During the start-up period, the reactor was operated in fed-batch mode for 25 days and 7 batches were treated. The SBR was inoculated with sludge taken from a reactor treating distillery vinasse. The results showed that this kind of sludge is a very good source of inoculum for digesters treating residues with a high content in fats and long-chain fatty acids because it was able to adapt very rapidly to the new substrate and, from the second batch on, the sludge was already able to metabolize the fatty residue at quite high rates. The AnSBR was then operated with 5 batches per week for 110 days and the quantity of VS added per batch was regularly increased until the maximum treatment capacity of the reactor (i.e. maximum loading rate) was reached. The maximum organic loading rates were found to be 0.16 g VS/g VSS d, or 0.224 g VS/g VSS.batch when the reactor is fed 5 times a week. The biodegradability of the skimmings was very high, with more than 97% of TS removal, and the methane production was 880±90 mL of methane/g of VSadded.


2006 ◽  
Vol 53 (9) ◽  
pp. 79-85 ◽  
Author(s):  
Z.H. Li ◽  
T. Kuba ◽  
T. Kusuda

In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g−1. However, the sludge volume index of short settling time (e.g. SVI10 – 10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.


Sign in / Sign up

Export Citation Format

Share Document