Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors

2009 ◽  
Vol 100 (3) ◽  
pp. 1162-1167 ◽  
Author(s):  
Peter De Schryver ◽  
Willy Verstraete
2020 ◽  
Vol 81 (2) ◽  
pp. 333-344
Author(s):  
Jianfeng Wen ◽  
Mark W. LeChevallier ◽  
Wendong Tao

Abstract Simultaneous nitrification and denitrification under low dissolved oxygen conditions is an energy-saving modification of the activated sludge process to achieve efficient nitrogen removal. Geographically distinct full-scale treatment plants are excellent platforms to address the links of microbial community with operating parameters. Mixed liquor samples were collected from a sequencing batch reactor plant, oxidation ditch plant, and step-feed activated sludge plant. Next-Generation Sequencing of the samples showed that the microbial communities were similar at the phylum level among the plants, being dominated by Proteobacteria. Microbial composition of functional groups was similar between the react fill and react phases of the sequencing batch reactors, among four sequencing batch reactors, and among four oxidation ditches. Nitrospira was the only identified genus of autotropic nitrifying bacteria with a relative abundance of 2.2–2.5% in the oxidation ditches and 0.4–0.7% at the other plants. Heterotrophic nitrifying–aerobic denitrifying bacteria were dominated by Dechloromonas with a relative abundance of 0.4–1.0%. Microbial community composition and nitrogen removal mechanisms were related to overall level and local zonation of dissolved oxygen, mixed liquor suspended solids concentration, nitrogen and organic loadings, and solids retention time. Low dissolved oxygen and low organic and nitrogen loadings favored growth of Nitrospira.


1997 ◽  
Vol 35 (1) ◽  
pp. 113-120 ◽  
Author(s):  
G. Andreottola ◽  
G. Bortone ◽  
A. Tilche

The development and the sensitivity analysis of a dynamic SBR simulation model for biological nitrogen removal, based on the Activated Sludge Model N. 1, are presented. An experimental study for the calibration and validation of the model was carried out using a bench scale SBR. Piggery wastewater was used as feed. The operating daily cycle of the SBR reactor included three sub-cycles of 7.5 hours each, each one alternating anoxic and aerobic condition, while settling phase was carried out at the end of the three sub-cycles. A first enhancement of model N. 1 was performed splitting nitrification into the two sub-processes of nitriation and nitratation. A second enhancement of the model was obtained with the introduction of a switch function of nitratation kinetics. An algorithm for optimization of the cycle length and phase distribution in order to minimize effluent nitrogen concentration was developed. A design procedure of SBR systems is also described.


Sign in / Sign up

Export Citation Format

Share Document