Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates

2010 ◽  
Vol 101 (12) ◽  
pp. 4554-4563 ◽  
Author(s):  
Laura Levin ◽  
Eliana Melignani ◽  
Araceli Marcela Ramos
2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
M. P. Singh ◽  
S. K. Vishwakarma ◽  
A. K. Srivastava

In the present investigation, four species of white rot fungi (Pleurotus), that is,P. flabellatus, P. florida, P. ostreatusandP. sajor-cajuwere used for decolorization of direct blue 14 (DB14). Among all four species ofPleurotus,P. flabellatusshowed the fastest decolorization in petri plates on different concentration, that is, 200 mg/L, 400 mg/L, and 600 mg/L. All these four species were also evaluated for extracellular ligninolytic enzymes (laccase and manganese peroxidase) production and it was observed that the twelve days old culture ofP. flabellatusshowed the maximum enzymatic activity, that is, 915.7 U/mL and 769.2 U/mL of laccase and manganese peroxidase, respectively. Other threePleurotusspecies took more time for dye decolorization and exhibited less enzymatic activities. The rate of decolorization of DB14 dye solution (20 mg/L) by crude enzymes isolated fromP. flabellatuswas very fast, and it was observed that up to 90.39% dye solution was decolorized in 6 hrs of incubation.


Author(s):  
Jaspreet Kaur ◽  
Amar Pal Singh ◽  
Ajeet Pal Singh ◽  
Rajinderpal Kaur

The White Fungus, which causes white rot on tree trunks, belongs to the basidiomycetes. Research into the microbiology of White-rot fungi has focused on engineering processes related to factors such as cell growth and enzyme production processes, and to smaller, i.e., molecular biology. Many studies have been conducted to select issues with high or specific biodegradation performance in a variety of ways. Production inhibitors have been used to improve enzyme production. Investigators are investigating different carriers (Stainless Steel net, polyamide fiber net, fiberglass net and polyurethane foam) to impair P.chrysosporium ligninolytic enzyme production. In this review, Pathophysiology, Microbiology, impact factors, treatments and alternative uses show white mold formation in biotransformation. The white fungus is being investigated to produce biotechnology for the reduction of a broad spectrum, a natural pollutant based on lignin-deficient enzymes. This in particular covers the destruction of many wastes and environmental pollution, including wastewater, pesticides, toxic natural pollutants, chlorinated hydrocarbons, etc. It will be updated.


2020 ◽  
Vol 6 (4) ◽  
pp. 301
Author(s):  
Ivana Eichlerová ◽  
Petr Baldrian

An extensive screening of saprotrophic Basidiomycetes causing white rot (WR), brown rot (BR), or litter decomposition (LD) for the production of laccase and Mn-peroxidase (MnP) and decolorization of the synthetic dyes Orange G and Remazol Brilliant Blue R (RBBR) was performed. The study considered in total 150 strains belonging to 77 species. The aim of this work was to compare the decolorization and ligninolytic capacity among different ecophysiological and taxonomic groups of Basidiomycetes. WR strains decolorized both dyes most efficiently; high decolorization capacity was also found in some LD fungi. The enzyme production was recorded in all three ecophysiology groups, but to a different extent. All WR and LD fungi produced laccase, and the majority of them also produced MnP. The strains belonging to BR lacked decolorization capabilities. None of them produced MnP and the production of laccase was either very low or absent. The most efficient decolorization of both dyes and the highest laccase production was found among the members of the orders Polyporales and Agaricales. The strains with high MnP activity occurred across almost all fungal orders (Polyporales, Agaricales, Hymenochaetales, and Russulales). Synthetic dye decolorization by fungal strains was clearly related to their production of ligninolytic enzymes and both properties were determined by the interaction of their ecophysiology and taxonomy, with a more relevant role of ecophysiology. Our screening revealed 12 strains with high decolorization capacity (9 WR and 3 LD), which could be promising for further biotechnological utilization.


Author(s):  
Nikki Agrawal ◽  
Preeti Verma ◽  
Ravi Shankar Singh ◽  
Sushil Kumar Shahi

Sign in / Sign up

Export Citation Format

Share Document