scholarly journals Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review

2013 ◽  
Vol 141 ◽  
pp. 97-108 ◽  
Author(s):  
Shufan Yang ◽  
Faisal I. Hai ◽  
Long D. Nghiem ◽  
William E. Price ◽  
Felicity Roddick ◽  
...  
2013 ◽  
Vol 148 ◽  
pp. 234-241 ◽  
Author(s):  
Luong N. Nguyen ◽  
Faisal I. Hai ◽  
Shufan Yang ◽  
Jinguo Kang ◽  
Frederic D.L. Leusch ◽  
...  

2020 ◽  
Vol 22 (10) ◽  
pp. 1925-2002
Author(s):  
Frank Wania ◽  
Chubashini Shunthirasingham

A comprehensive and critical review of the state-of-knowledge on the sampling of trace organic contaminants from the atmosphere without the help of a pump.


2013 ◽  
Vol 67 (6) ◽  
pp. 1216-1223 ◽  
Author(s):  
Shufan Yang ◽  
Faisal I. Hai ◽  
Long D. Nghiem ◽  
Felicity Roddick ◽  
William E. Price

The resistance of certain anthropogenic trace organic contaminants (TrOCs) to conventional wastewater treatment and their potential adverse effects on human and ecological health raise significant concerns and have prompted research on their bioremediation by white-rot fungi. This study compared the removal efficiencies of four widespread TrOCs: carbamazepine (CBZ), sulfamethoxazole (SMX), bisphenol A (BPA) and diclofenac (DCF), by nitrifying activated sludge as well as whole-cell and extracellular enzyme (laccase) extract of the white-rot fungus Trametes versicolor. Fungal whole-cell culture removed only BPA and DCF but with high efficiencies (>90%) while the mixed nitrifying culture removed all compounds, although by levels of only 5–40%. Rapid initial sorption on fungal mycelium (44 ± 13% for DCF) was observed; however, biodegradation governed the overall removal. Performance comparison between fungal whole-cell and extracellular extract revealed that, unlike BPA, a catalytic pathway independent of extracellular laccase was responsible for DCF removal. Addition of mediator (1-hydroxybenzotriazole) to extracellular extract improved the removal of SMX which bears an electron donor group, but not that of the resistant compound CBZ.


2017 ◽  
Vol 3 (2) ◽  
pp. 88-103 ◽  
Author(s):  
Muhammad B. Asif ◽  
Faisal I. Hai ◽  
Lakhveer Singh ◽  
William E. Price ◽  
Long D. Nghiem

Sign in / Sign up

Export Citation Format

Share Document