scholarly journals Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration

2013 ◽  
Vol 142 ◽  
pp. 706-713 ◽  
Author(s):  
Gaetano Di Bella ◽  
Michele Torregrossa
Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 516 ◽  
Author(s):  
Rauno Lust ◽  
Jaak Nerut ◽  
Kuno Kasak ◽  
Ülo Mander

Assessments of groundwater aquifers made around the world show that in many cases, nitrate concentrations exceed the safe drinking water threshold. This study assessed how bioelectrochemical systems could be used to enhance nitrate removal from waters with low organic carbon concentrations. A two-chamber microbial electrosynthesis cell (MES) was constructed and operated for 45 days with inoculum that was taken from a municipal wastewater treatment plant. A study showed that MES can be used to enhance nitrate removal efficiency from 3.66% day−1 in a control reactor to 8.54% day−1 in the MES reactor, if a cathode is able to act as an electron donor for autotrophic denitrifying bacteria or there is reducing oxygen in a cathodic chamber to favor denitrification. In the MES, greenhouse gas emissions were also lower compared to the control. Nitrous oxide average fluxes were −639.59 and −9.15 µg N m−2 h−1 for the MES and control, respectively, and the average carbon dioxide fluxes were −5.28 and 43.80 mg C m−2 h−1, respectively. The current density correlated significantly with the dissolved oxygen concentration, indicating that it is essential to keep the dissolved oxygen concentration in the cathode chamber as low as possible, not only to suppress oxygen’s inhibiting effect on denitrification but also to achieve better power efficiency.


Radiocarbon ◽  
1997 ◽  
Vol 40 (2) ◽  
pp. 915-920 ◽  
Author(s):  
E. Boaretto ◽  
L. Thorling ◽  
Á. E. Sveinbjörnsdóttir ◽  
Y. Yechieli ◽  
J. Heinemeier

The carbonate hydrochemistry of groundwater from the Hvinningdal aquifer (Denmark) was studied by radiocarbon (accelerator mass spectrometry (AMS)) and δ13C measurements as a preliminary step towards 14C groundwater dating. The 14C concentrations varied between 30 and 100 percent modern carbon (pMC) in apparent contradiction with tritium (3H) data, which in most cases indicate a post-bomb date. The dilution of 14C can be explained as being due to the combined effect of dissolution of old soil carbonate and oxidation of old organic carbon. The last effect proved to be essential. To calculate this correction the dissolved oxygen concentration was used together with the δ13C values. The combined corrections bring the 14C concentrations up to post-bomb levels in better agreement with the 3H data.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1769-1778 ◽  
Author(s):  
S.-I. Lee ◽  
B. Koopman ◽  
E. P. Lincoln

Combined chemical flocculation and autoflotation were examined using pilot scale process with chitosan and alum as flocculants. Positive correlation was observed between dissolved oxygen concentration and rise rate. Rise rate depended entirely on the autoflotation parameters: mixing intensity, retention time, and flocculant contact time. Also, rise rate was influenced by the type of flocculant used. The maximum rise rate with alum was observed to be 70 m/h, whereas that with chitosan was approximately 420 m/h. The efficiency of the flocculation-autoflotation process was superior to that of the flocculation-sedimentation process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Chaoyue ◽  
Feng Shiyu ◽  
Xu Lei ◽  
Peng Xiaotian ◽  
Yan Yan

AbstractDissolved oxygen evolving from aviation fuel leads to an increase in the oxygen concentration in an inert aircraft fuel tank ullage that may increase the flammability of the tank. Aviation fuel scrubbing with nitrogen-enriched air (NEA) can largely reduce the amount of dissolved oxygen and counteract the adverse effect of oxygen evolution. The gas–liquid mass transfer characteristics of aviation fuel scrubbing are investigated using the computational fluid dynamics method, which is verified experimentally. The effects of the NEA bubble diameter, NEA superficial velocity and fuel load on oxygen transfer between NEA and aviation fuel are discussed. Findings from this work indicate that the descent rate of the average dissolved oxygen concentration, gas holdup distribution and volumetric mass transfer coefficient increase with increasing NEA superficial velocity but decrease with increasing bubble diameter and fuel load. When the bubble diameter varies from 1 to 4 mm, the maximum change of descent rate of dissolved oxygen concentration is 18.46%, the gas holdup is 8.73%, the oxygen volumetric mass transfer coefficient is 81.45%. When the NEA superficial velocities varies from 0.04 to 0.10 m/s, the maximum change of descent rate of dissolved oxygen concentration is 146.77%, the gas holdup is 77.14%, the oxygen volumetric mass transfer coefficient is 175.38%. When the fuel load varies from 35 to 80%, the maximum change of descent rate of dissolved oxygen concentration is 21.15%, the gas holdup is 49.54%, the oxygen volumetric mass transfer coefficient is 44.57%. These results provide a better understanding of the gas and liquid mass transfer characteristics of aviation fuel scrubbing in aircraft fuel tanks and can promote the optimal design of fuel scrubbing inerting systems.


Sign in / Sign up

Export Citation Format

Share Document