Catalytic pyrolysis of palm kernel shell waste in a fluidized bed

2014 ◽  
Vol 167 ◽  
pp. 425-432 ◽  
Author(s):  
Sung Won Kim ◽  
Bon Seok Koo ◽  
Dong Hyun Lee
2016 ◽  
Vol 18 (6) ◽  
pp. 1684-1693 ◽  
Author(s):  
Pouya Sirous Rezaei ◽  
Hoda Shafaghat ◽  
Wan Mohd Ashri Wan Daud

Lignin-derived phenolics are tightly bound with zeolite acid sites, and act as coke precursors. A bifunctional Fe/HBeta catalyst is efficient for upgrading of biomass materials with high lignin content.


2018 ◽  
Vol 33 (1) ◽  
pp. 379-388 ◽  
Author(s):  
Hongchao Wang ◽  
Guozhang Chang ◽  
Pengyu Qi ◽  
Xiao Li ◽  
Qingjie Guo

2021 ◽  
Vol 22 (2) ◽  
pp. 101
Author(s):  
Bernadeta Ayu Widyaningrum ◽  
Dita Apriani ◽  
Putri Amanda ◽  
Ismadi Ismadi ◽  
Sutanto Sutanto

SYNTHESIS AND CHARACTERIZATION: COMPOSITE OF GRAPHENE OXIDE BASED PALM KERNEL SHELL WASTE WITH Fe3O4. In this study, GO-Fe3O4 were fabricated by co-precipitation technique and the graphene oxide (GO) were synthesized from an agricultural biomass, palm kernel shell, via Hummer’s method. Field Emission Scanning Electron Microscopy and Energy Dispersive Spectrum (FESEM-EDS), Fourier Transform Infra-Red (FT-IR) spectroscopy, X-Ray Diffractometer (XRD), and Raman spectroscopy were used to analysis the successful attachment of Fe3O4 onto the surface of GO. Morphology observation showed that Fe3O4 were heterogeneously deposited on the surface of GO. FT-IR spectra shows peak that incorporated to oxygenated functional groups and sharp peak at 586 cm-1 confirmed to lattice absorption of Fe3O4. The percentage of composition of GO-Fe3O4 was characterized by energy dispersive spectroscopy and the results also confirmed in XRD exhibits similar properties with JCPDS 19-0629 for magnetite more dominant than GO. From Raman spectroscopy analysis shows that 1343.82 cm-1 (D-band) and 1584.62 cm-1 (G-band) and 2698 cm-1 (2D-band) indicates GO and GO-Fe3O4 were successfully synthesized.


2018 ◽  
Vol 253 ◽  
pp. 214-219 ◽  
Author(s):  
Guozhang Chang ◽  
Peng Miao ◽  
Ximin Yan ◽  
Guijin Wang ◽  
Qingjie Guo

2021 ◽  
Vol 61 (2) ◽  
pp. 91-104
Author(s):  
A. Nyamful ◽  
E. K. Nyogbe ◽  
L. Mohammed ◽  
M. N. Zainudeen ◽  
S. A. Darkwa ◽  
...  

Palm kernel shell and coconut shell are used as a precursor for the production of activated carbon, a way of mitigating the tons of waste produced in Ghana. The raw Palm kernel shell and coconut shell were activated chemically using H3PO4. A maximum activated carbon yield of 26.3 g was obtained for Palm kernel shell and 22.9 g for coconut shell at 400oC, an impregnation ratio of 1.2 and 1-hour carbonization time. Scanning electron microscopy reveals well-developed cavities of the H3PO4 activated coconut shell and Palm kernel shell compared to the non-activated carbon. Iodine number of 743.02 mg/g and 682.11 mg/g, a porosity of 0.31 and 0.49 and the electrical conductivity of 2010 μS/cm and 778 μS /cm were obtained for the AC prepared from the coconut shell and Palm kernel shell respectively. The results of this work show that high-quality activated carbon can be manufactured locally from coconut shell and Palm kernel shell waste, and a scale-up of this production will go a long way to reduce the tons of coconut shell and Palm kernel shell waste generated in the country.


2015 ◽  
Vol 29 (9) ◽  
pp. 5894-5901 ◽  
Author(s):  
Carlos F. Valdés ◽  
Gloria Marrugo ◽  
Farid Chejne ◽  
Jorge I. Montoya ◽  
Carlos A. Gómez

2016 ◽  
Vol 35 (2) ◽  
pp. 150-157 ◽  
Author(s):  
M. Shahbaz ◽  
S. Yusup ◽  
M. Y. Naz ◽  
S. A. Sulaiman ◽  
A. Inayat ◽  
...  

2014 ◽  
Vol 625 ◽  
pp. 616-619
Author(s):  
Ali Norizan ◽  
Yoshimitsu Uemura ◽  
Hafizah Ahmad Afif ◽  
Noridah Osman ◽  
Wissam N. Omar ◽  
...  

This study investigates the effect of pyrolysis temperature on the yields of char, organic compounds, water and gas. Fast pyrolysis was carried out in a fluidized bed reactor of 108 mm in internal diameter operated at 400, 450, 500 and 550 °C with nitrogen gas with flow rate of 25 L(NTP)/min. In specific the effect of temperature on the yields of known and unknown organics in bio-oil is discussed. For higher total organics, 500 oC was favorable. But higher phenol and acetic acid yields, 450 oC was preferable. The major organics include acetic acid, phenol and furfural. The minor ones include 2-methylphenol, 4-methylphenol, 4-methylnaphthalene, benzene, toluene and THF.


Sign in / Sign up

Export Citation Format

Share Document